本文整理汇总了Java中weka.core.DenseInstance.setDataset方法的典型用法代码示例。如果您正苦于以下问题:Java DenseInstance.setDataset方法的具体用法?Java DenseInstance.setDataset怎么用?Java DenseInstance.setDataset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类weka.core.DenseInstance
的用法示例。
在下文中一共展示了DenseInstance.setDataset方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: toWekaInstance
import weka.core.DenseInstance; //导入方法依赖的package包/类
/**
* toWekaInstance
*
* @param dataset
* @return
*/
public Instance toWekaInstance(Instances dataset) {
// create instance
DenseInstance instance = new DenseInstance(13);
instance.setDataset(dataset);
// set values
instance.setValue(0, this.getMean());
instance.setValue(1, this.getMedian());
instance.setValue(2, this.getMin());
instance.setValue(3, this.getMax());
instance.setValue(4, this.getStd());
instance.setValue(5, this.getLowQuantile());
instance.setValue(6, this.getHighQuantile());
instance.setValue(7, this.getIqr());
instance.setValue(8, this.getKurtosis());
instance.setValue(9, this.getRange());
instance.setValue(10, this.getPower());
instance.setValue(11, this.getTotalF0());
instance.setValue(12, stressed ? "stressed" : "unstressed");
// return instance
return instance;
}
示例2: fillData
import weka.core.DenseInstance; //导入方法依赖的package包/类
private void fillData(double[] featureValues, String className, Instances data) {
double[] vals = new double[data.numAttributes()];
if (vals.length != (featureValues.length + 1)) {
if (FrameworkContext.WARN) Log.w(TAG, "Number of feature values and weka instance values differs.");
}
for (int i = 0; i < featureValues.length; i++) {
vals[i] = featureValues[i];
}
vals[vals.length - 1] = attClassVals.indexOf(className);
DenseInstance instance = new DenseInstance(1.0, vals);
if (isLogDirectlyToFile) {
instance.setDataset(data);
logArffData(instance.toString());
} else {
// add
data.add(instance);
}
}
示例3: makeInstance
import weka.core.DenseInstance; //导入方法依赖的package包/类
/**
* Method that converts a text message into an instance.
*/
private static Instance makeInstance(String text, Instances data) {
// Create instance of length two.
DenseInstance instance = new DenseInstance(2);
// Set value for message attribute
Attribute messageAtt = data.attribute("text");
instance.setValue(messageAtt, messageAtt.addStringValue(text));
// Give instance access to attribute information from the dataset.
instance.setDataset(data);
return instance;
}
示例4: distributionForInstance
import weka.core.DenseInstance; //导入方法依赖的package包/类
@Override
public double[] distributionForInstance(Instance inst) throws Exception {
double[] result = new double[2];
tokenizeInstance(inst, false);
double wx = dotProd(m_inputVector);
double z = (wx + m_bias);
if (m_loss == HINGE && m_fitLogistic) {
double pred = z;
double[] vals = new double[2];
vals[0] = pred;
vals[1] = Utils.missingValue();
DenseInstance metaI = new DenseInstance(inst.weight(), vals);
metaI.setDataset(m_fitLogisticStructure);
return m_svmProbs.distributionForInstance(metaI);
}
if (z <= 0) {
if (m_loss == LOGLOSS) {
result[0] = 1.0 / (1.0 + Math.exp(z));
result[1] = 1.0 - result[0];
} else {
result[0] = 1;
}
} else {
if (m_loss == LOGLOSS) {
result[1] = 1.0 / (1.0 + Math.exp(-z));
result[0] = 1.0 - result[1];
} else {
result[1] = 1;
}
}
return result;
}
示例5: process
import weka.core.DenseInstance; //导入方法依赖的package包/类
/**
* Processes the given data.
*
* @param instances the data to process
* @return the modified data
* @throws Exception in case the processing goes wrong
*/
@Override
protected Instances process(Instances instances) throws Exception {
// Generate the output and return it
Instances result = new Instances(getOutputFormat(),
instances.numInstances());
for (int i = 0; i < instances.numInstances(); i++) {
Instance inst = instances.instance(i);
double[] newData = new double[instances.numAttributes()];
for (int j = 0; j < instances.numAttributes(); j++) {
if (m_AttToBeModified[j] && !inst.isMissing(j)) {
newData[j] = m_Indicators[j][(int) inst.value(j)];
} else {
newData[j] = inst.value(j);
}
}
DenseInstance instNew = new DenseInstance(1.0, newData);
instNew.setDataset(result);
// copy possible strings, relational values...
copyValues(instNew, false, inst.dataset(), getOutputFormat());
// Add instance to output
result.add(instNew);
}
return result;
}
示例6: process
import weka.core.DenseInstance; //导入方法依赖的package包/类
/**
* Processes the given data.
*
* @param instances the data to process
* @return the modified data
* @throws Exception in case the processing goes wrong
*/
@Override
protected Instances process(Instances instances) throws Exception {
// Generate the output and return it
Instances result = new Instances(getOutputFormat(),
instances.numInstances());
for (int i = 0; i < instances.numInstances(); i++) {
Instance inst = instances.instance(i);
double[] newData = new double[instances.numAttributes()];
for (int j = 0; j < instances.numAttributes(); j++) {
if (m_AttToBeModified[j] && !inst.isMissing(j)) {
newData[j] = m_NewValues[j][(int) inst.value(j)];
} else {
newData[j] = inst.value(j);
}
}
DenseInstance instNew = new DenseInstance(1.0, newData);
instNew.setDataset(result);
// copy possible strings, relational values...
copyValues(instNew, false, inst.dataset(), getOutputFormat());
// Add instance to output
result.add(instNew);
}
return result;
}
示例7: distributionForInstance
import weka.core.DenseInstance; //导入方法依赖的package包/类
public double[] distributionForInstance(Instance inst) throws Exception {
double[] result = new double[2];
tokenizeInstance(inst, false);
double wx = dotProd(m_inputVector);
double z = (wx + m_bias);
if (m_loss == HINGE && m_fitLogistic) {
double pred = z;
double[] vals = new double[2];
vals[0] = pred;
vals[1] = Utils.missingValue();
DenseInstance metaI = new DenseInstance(inst.weight(), vals);
metaI.setDataset(m_fitLogisticStructure);
return m_svmProbs.distributionForInstance(metaI);
}
if (z <= 0) {
if (m_loss == LOGLOSS) {
result[0] = 1.0 / (1.0 + Math.exp(z));
result[1] = 1.0 - result[0];
} else {
result[0] = 1;
}
} else {
if (m_loss == LOGLOSS) {
result[1] = 1.0 / (1.0 + Math.exp(-z));
result[0] = 1.0 - result[1];
} else {
result[1] = 1;
}
}
return result;
}
示例8: execute
import weka.core.DenseInstance; //导入方法依赖的package包/类
/**
* Perform the sub task
*/
@Override
public void execute() {
m_random = new Random(m_rowNumber * 11);
m_dataGenerator.setSeed(m_rowNumber * 11);
m_result = new RemoteResult(m_rowNumber, m_panelWidth);
m_status.setTaskResult(m_result);
m_status.setExecutionStatus(TaskStatusInfo.PROCESSING);
try {
m_numOfSamplesPerGenerator = (int) Math.pow(m_samplesBase,
m_trainingData.numAttributes() - 3);
if (m_trainingData == null) {
throw new Exception("No training data set (BoundaryPanel)");
}
if (m_classifier == null) {
throw new Exception("No classifier set (BoundaryPanel)");
}
if (m_dataGenerator == null) {
throw new Exception("No data generator set (BoundaryPanel)");
}
if (m_trainingData.attribute(m_xAttribute).isNominal()
|| m_trainingData.attribute(m_yAttribute).isNominal()) {
throw new Exception("Visualization dimensions must be numeric "
+ "(RemoteBoundaryVisualizerSubTask)");
}
m_attsToWeightOn = new boolean[m_trainingData.numAttributes()];
m_attsToWeightOn[m_xAttribute] = true;
m_attsToWeightOn[m_yAttribute] = true;
// generate samples
m_weightingAttsValues = new double[m_attsToWeightOn.length];
m_vals = new double[m_trainingData.numAttributes()];
m_predInst = new DenseInstance(1.0, m_vals);
m_predInst.setDataset(m_trainingData);
System.err.println("Executing row number " + m_rowNumber);
for (int j = 0; j < m_panelWidth; j++) {
double[] preds = calculateRegionProbs(j, m_rowNumber);
m_result.setLocationProbs(j, preds);
m_result
.setPercentCompleted((int) (100 * ((double) j / (double) m_panelWidth)));
}
} catch (Exception ex) {
m_status.setExecutionStatus(TaskStatusInfo.FAILED);
m_status.setStatusMessage("Row " + m_rowNumber + " failed.");
System.err.print(ex);
return;
}
// finished
m_status.setExecutionStatus(TaskStatusInfo.FINISHED);
m_status
.setStatusMessage("Row " + m_rowNumber + " completed successfully.");
}
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:60,代码来源:RemoteBoundaryVisualizerSubTask.java
示例9: makeInstance
import weka.core.DenseInstance; //导入方法依赖的package包/类
protected Instance makeInstance() throws IOException {
if (m_current == null) {
return null;
}
double[] vals = new double[m_structure.numAttributes()];
for (int i = 0; i < m_structure.numAttributes(); i++) {
Object val = m_current.get(i);
if (val.toString().equals("?")) {
vals[i] = Utils.missingValue();
} else if (m_structure.attribute(i).isString()) {
vals[i] = 0;
m_structure.attribute(i).setStringValue(Utils.unquote(val.toString()));
} else if (m_structure.attribute(i).isDate()) {
String format = m_structure.attribute(i).getDateFormat();
SimpleDateFormat sdf = new SimpleDateFormat(format);
String dateVal = Utils.unquote(val.toString());
try {
vals[i] = sdf.parse(dateVal).getTime();
} catch (ParseException e) {
throw new IOException("Unable to parse date value " + dateVal
+ " using date format " + format + " for date attribute "
+ m_structure.attribute(i) + " (line: " + m_rowCount + ")");
}
} else if (m_structure.attribute(i).isNumeric()) {
try {
Double v = Double.parseDouble(val.toString());
vals[i] = v.doubleValue();
} catch (NumberFormatException ex) {
throw new IOException("Was expecting a number for attribute "
+ m_structure.attribute(i).name() + " but read " + val.toString()
+ " instead. (line: " + m_rowCount + ")");
}
} else {
// nominal
double index =
m_structure.attribute(i).indexOfValue(Utils.unquote(val.toString()));
if (index < 0) {
throw new IOException("Read unknown nominal value " + val.toString()
+ "for attribute " + m_structure.attribute(i).name() + " (line: "
+ m_rowCount + "). Try increasing the size of the memory buffer"
+ " (-B option) or explicitly specify legal nominal values with "
+ "the -L option.");
}
vals[i] = index;
}
}
DenseInstance inst = new DenseInstance(1.0, vals);
inst.setDataset(m_structure);
return inst;
}
示例10: execute
import weka.core.DenseInstance; //导入方法依赖的package包/类
/**
* Perform the sub task
*/
public void execute() {
m_random = new Random(m_rowNumber * 11);
m_dataGenerator.setSeed(m_rowNumber * 11);
m_result = new RemoteResult(m_rowNumber, m_panelWidth);
m_status.setTaskResult(m_result);
m_status.setExecutionStatus(TaskStatusInfo.PROCESSING);
try {
m_numOfSamplesPerGenerator =
(int)Math.pow(m_samplesBase, m_trainingData.numAttributes()-3);
if (m_trainingData == null) {
throw new Exception("No training data set (BoundaryPanel)");
}
if (m_classifier == null) {
throw new Exception("No classifier set (BoundaryPanel)");
}
if (m_dataGenerator == null) {
throw new Exception("No data generator set (BoundaryPanel)");
}
if (m_trainingData.attribute(m_xAttribute).isNominal() ||
m_trainingData.attribute(m_yAttribute).isNominal()) {
throw new Exception("Visualization dimensions must be numeric "
+"(RemoteBoundaryVisualizerSubTask)");
}
m_attsToWeightOn = new boolean[m_trainingData.numAttributes()];
m_attsToWeightOn[m_xAttribute] = true;
m_attsToWeightOn[m_yAttribute] = true;
// generate samples
m_weightingAttsValues = new double [m_attsToWeightOn.length];
m_vals = new double[m_trainingData.numAttributes()];
m_predInst = new DenseInstance(1.0, m_vals);
m_predInst.setDataset(m_trainingData);
System.err.println("Executing row number "+m_rowNumber);
for (int j = 0; j < m_panelWidth; j++) {
double [] preds = calculateRegionProbs(j, m_rowNumber);
m_result.setLocationProbs(j, preds);
m_result.
setPercentCompleted((int)(100 * ((double)j / (double)m_panelWidth)));
}
} catch (Exception ex) {
m_status.setExecutionStatus(TaskStatusInfo.FAILED);
m_status.setStatusMessage("Row "+m_rowNumber+" failed.");
System.err.print(ex);
return;
}
// finished
m_status.setExecutionStatus(TaskStatusInfo.FINISHED);
m_status.setStatusMessage("Row "+m_rowNumber+" completed successfully.");
}
示例11: makeInstance
import weka.core.DenseInstance; //导入方法依赖的package包/类
protected Instance makeInstance() throws IOException {
if (m_current == null) {
return null;
}
double[] vals = new double[m_structure.numAttributes()];
for (int i = 0; i < m_structure.numAttributes(); i++) {
Object val = m_current.get(i);
if (val.toString().equals("?")) {
vals[i] = Utils.missingValue();
} else if (m_structure.attribute(i).isString()) {
vals[i] = 0;
m_structure.attribute(i).setStringValue(Utils.unquote(val.toString()));
} else if (m_structure.attribute(i).isDate()) {
String format = m_structure.attribute(i).getDateFormat();
SimpleDateFormat sdf = new SimpleDateFormat(format);
try {
vals[i] = sdf.parse(val.toString()).getTime();
} catch (ParseException e) {
throw new IOException("Unable to parse date value " + val.toString()
+ " using date format " + format + " for date attribute "
+ m_structure.attribute(i) + " (line: " + m_rowCount + ")");
}
} else if (m_structure.attribute(i).isNumeric()) {
try {
Double v = Double.parseDouble(val.toString());
vals[i] = v.doubleValue();
} catch (NumberFormatException ex) {
throw new IOException("Was expecting a number for attribute "
+ m_structure.attribute(i).name() + " but read " + val.toString()
+ " instead. (line: " + m_rowCount + ")");
}
} else {
// nominal
double index =
m_structure.attribute(i).indexOfValue(Utils.unquote(val.toString()));
if (index < 0) {
throw new IOException("Read unknown nominal value " + val.toString()
+ "for attribute " + m_structure.attribute(i).name() + " (line: "
+ m_rowCount + ")");
}
vals[i] = index;
}
}
DenseInstance inst = new DenseInstance(1.0, vals);
inst.setDataset(m_structure);
return inst;
}