当前位置: 首页>>代码示例>>Java>>正文


Java FilteredClassifier.classifyInstance方法代码示例

本文整理汇总了Java中weka.classifiers.meta.FilteredClassifier.classifyInstance方法的典型用法代码示例。如果您正苦于以下问题:Java FilteredClassifier.classifyInstance方法的具体用法?Java FilteredClassifier.classifyInstance怎么用?Java FilteredClassifier.classifyInstance使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在weka.classifiers.meta.FilteredClassifier的用法示例。


在下文中一共展示了FilteredClassifier.classifyInstance方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: buildFilteredClassifier

import weka.classifiers.meta.FilteredClassifier; //导入方法依赖的package包/类
public void buildFilteredClassifier(){
	rf = new RandomForest();
	Remove rm = new Remove();
	rm.setAttributeIndices("1");
	FilteredClassifier fc = new FilteredClassifier();
	fc.setFilter(rm);
	fc.setClassifier(rf);
	try{
		fc.buildClassifier(weather);
		for (int i = 0; i < weather.numInstances(); i++){
			double pred = fc.classifyInstance(weather.instance(i));
			System.out.print("given value: " + weather.classAttribute().value((int) weather.instance(i).classValue()));
			System.out.println("---predicted value: " + weather.classAttribute().value((int) pred));
		}
	} catch (Exception e) {
	}
}
 
开发者ID:PacktPublishing,项目名称:Java-Data-Science-Cookbook,代码行数:18,代码来源:WekaFilteredClassifierTest.java

示例2: classify

import weka.classifiers.meta.FilteredClassifier; //导入方法依赖的package包/类
/**
 * Classifies function wise test instances in the associated with the names labels mentioned in the arraylist passed as the argument.
 *
 * @param list - labels of instances contained in the test set that need to be classified.
 * @return TreeMap containing the instance labels and the associated classification results.
 * @throws ClassificationFailedException
 */
@Override
public LinkedHashMap<String, String> classify(LinkedList<String> list) throws ClassificationFailedException {
    output = new LinkedHashMap<String, String>();
    J48 j48 = new J48();
    Remove rm = new Remove();
    rm.setAttributeIndices("1");
    FilteredClassifier fc = new FilteredClassifier();
    fc.setFilter(rm);
    fc.setClassifier(j48);
    try {
        fc.buildClassifier(trainSet);
        for (int i = 0; i < testSet.numInstances(); i++) {
            double pred = fc.classifyInstance(testSet.instance(i));
            if (list.isEmpty()) {
                output.put(String.valueOf(i + 1), testSet.classAttribute().value((int) pred));
            } else {
                output.put(list.get(i), testSet.classAttribute().value((int) pred));
            }
        }
    } catch (Exception ex) {
        throw new ClassificationFailedException();
    }
    return output;
}
 
开发者ID:sunimalr,项目名称:vimarsha,代码行数:32,代码来源:FunctionWiseClassifier.java

示例3: classify

import weka.classifiers.meta.FilteredClassifier; //导入方法依赖的package包/类
/**
 * Classifies whole program test instances,
 *
 * @return String containing the classification result of the evaluated program's dataset.
 * @throws ClassificationFailedException
 */
@Override
public Object classify() throws ClassificationFailedException {
    J48 j48 = new J48();
    Remove rm = new Remove();
    String output = null;
    rm.setAttributeIndices("1");
    FilteredClassifier fc = new FilteredClassifier();
    fc.setFilter(rm);
    fc.setClassifier(j48);
    try {
        fc.buildClassifier(trainSet);
        this.treeModel = j48.toString();
        double pred = fc.classifyInstance(testSet.instance(0));
        output = testSet.classAttribute().value((int) pred);
        classificationResult = output;
    } catch (Exception ex) {
        throw new ClassificationFailedException();
    }
    return output;
}
 
开发者ID:sunimalr,项目名称:vimarsha,代码行数:27,代码来源:WholeProgramClassifier.java

示例4: classify

import weka.classifiers.meta.FilteredClassifier; //导入方法依赖的package包/类
/**
 * Classifies Timesliced test data instances.
 *
 * @return Resulting linked list with timelsiced classification results.
 * @throws ClassificationFailedException
 */
@Override
public Object classify() throws ClassificationFailedException {
    output = new LinkedList<String>();
    J48 j48 = new J48();
    Remove rm = new Remove();
    rm.setAttributeIndices("1");
    FilteredClassifier fc = new FilteredClassifier();
    fc.setFilter(rm);
    fc.setClassifier(j48);
    try {
        fc.buildClassifier(trainSet);


        for (int i = 0; i < testSet.numInstances(); i++) {
            //System.out.println(testSet.instance(i));
            double pred = fc.classifyInstance(testSet.instance(i));
            output.add(testSet.classAttribute().value((int) pred));
        }
    } catch (Exception ex) {
        System.out.println(ex.toString());
        throw new ClassificationFailedException();
    }
    return output;
}
 
开发者ID:sunimalr,项目名称:vimarsha,代码行数:31,代码来源:TimeslicedClassifier.java

示例5: classifyDisagreedOnAgreed

import weka.classifiers.meta.FilteredClassifier; //导入方法依赖的package包/类
/**
 * Classifies the list of testing set(disagreed items) with the trained model of the training set(total of agreed items)
 * @param training the set of agreed items
 * @param testing the set of disagreed items
 * @param pointer value of 0 if the Instances are of Item type or 1 if the Instances are of User type
 * @throws Exception
 */
public void classifyDisagreedOnAgreed(Instances training, Instances testing, int pointer) throws Exception {
	
	/**classify disagreed building model on the agreed**/
	
	//define the filtered classifier
	FilteredClassifier fc = new FilteredClassifier();
	RandomForest tree = new RandomForest();
	//remove the id attribute
	Remove rm = new Remove();
	rm.setAttributeIndices("1");
	//set the remove filter 
	fc.setFilter(rm);
	//set the the classifier type
	fc.setClassifier(tree);
	
	//build the model
	try {
		fc.buildClassifier(training);
	} catch (Exception e) {
		e.printStackTrace();
	}
	
	int counter2 = 0, counterFake=0, counterReal=0;
	
	//iterate through the testing set and predict with the model formed before
	for (int i=0; i<testing.size(); i++) {
		double pred = fc.classifyInstance(testing.instance(i));
		//System.out.print("ID: " + testing.instance(i).stringValue(0));
		String actual = testing.classAttribute().value((int) testing.instance(i).classValue());
		//System.out.print(", actual: " + testing.classAttribute().value((int) testing.instance(i).classValue()));
		String predicted = testing.classAttribute().value((int) pred);
		//System.out.println(", predicted: " + testing.classAttribute().value((int) pred));
		
		//compare the actual and the predicted values of each instance
		if (actual.equals(predicted)) {
			counter2++;
			if (actual.equals("fake")) {
				counterFake++;
			}
			else {
				counterReal++;
			}
		}
	}
	//print info
	System.out.println();
	System.out.println("DISAGREED CLASSIFICATION BASED ON THE AGREED");
	System.out.println("Testing with a training set:");
	System.out.println("Disagreed accuracy "+ (double)counter2/testing.size()*100 );
	System.out.println("Fake items predicted right "+counterFake);
	System.out.println("Real items predicted right "+counterReal);
	
	System.out.println("Testing with bagging:");
	int trainingSize = training.size()/5;
	
	//apply bagging with training set the agreed items
	if (pointer==0) {
		Classifier[] itemCls = Bagging.createClassifiers(training, testing, trainingSize);		
		Bagging.classifyItems(itemCls,Bagging.getTestingSets());
	}
	else {
		Classifier[] userCls = Bagging.createClassifiersUser(training, testing, trainingSize);		
		Bagging.classifyItems(userCls,Bagging.getTestingSetsUser());
	}
	/**end of classify disagreed building model on the agreed**/
	
	
}
 
开发者ID:socialsensor,项目名称:computational-verification,代码行数:76,代码来源:AgreementBasedRetraining.java


注:本文中的weka.classifiers.meta.FilteredClassifier.classifyInstance方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。