本文整理汇总了Java中weka.classifiers.functions.MultilayerPerceptron.buildClassifier方法的典型用法代码示例。如果您正苦于以下问题:Java MultilayerPerceptron.buildClassifier方法的具体用法?Java MultilayerPerceptron.buildClassifier怎么用?Java MultilayerPerceptron.buildClassifier使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类weka.classifiers.functions.MultilayerPerceptron
的用法示例。
在下文中一共展示了MultilayerPerceptron.buildClassifier方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: buildClassifier
import weka.classifiers.functions.MultilayerPerceptron; //导入方法依赖的package包/类
public Classifier buildClassifier(Instances traindataset) {
MultilayerPerceptron m = new MultilayerPerceptron();
try {
m.buildClassifier(traindataset);
} catch (Exception ex) {
Logger.getLogger(ModelGenerator.class.getName()).log(Level.SEVERE, null, ex);
}
return m;
}
示例2: trainMultilayerPerceptron
import weka.classifiers.functions.MultilayerPerceptron; //导入方法依赖的package包/类
public static void trainMultilayerPerceptron(final Instances trainingSet) throws Exception {
// Create a classifier
final MultilayerPerceptron tree = new MultilayerPerceptron();
tree.buildClassifier(trainingSet);
// Test the model
final Evaluation eval = new Evaluation(trainingSet);
// eval.crossValidateModel(tree, trainingSet, 10, new Random(1));
eval.evaluateModel(tree, trainingSet);
// Print the result à la Weka explorer:
logger.info(eval.toSummaryString());
logger.info(eval.toMatrixString());
logger.info(tree.toString());
}
示例3: wekaOutputTEST
import weka.classifiers.functions.MultilayerPerceptron; //导入方法依赖的package包/类
public static FCMWeka wekaOutputTEST() throws Exception {
StringBuilder sb = new StringBuilder();
sb.append("@relation level_of_satisfaction\n\n");
sb.append("@attribute speed_public_service numeric\n");
sb.append("@attribute accessibility numeric\n");
sb.append("@attribute regional_Gdp numeric\n");
sb.append("@attribute 'level of satisfaction' numeric\n\n");
sb.append("@data\n");
sb.append("0.6,0.2,0.6,0.2\n");
sb.append("0.6,0.4,0.6,0.2\n");
sb.append("0.6,0.4,0.8,0.2\n");
sb.append("0.4,0.6,0.8,0.4\n");
sb.append("0.8,1,1,0.8\n");
sb.append("1,1,1,1\n");
StringReader trainreader = new StringReader(sb.toString());
Instances train = new Instances(trainreader);
train.setClassIndex(train.numAttributes()-1);
MultilayerPerceptron classifier = new MultilayerPerceptron();
classifier.setHiddenLayers("0");
try {
classifier.buildClassifier(train);
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
String wekaResp=classifier.toString();
FCMWeka output=new FCMWeka();
output.setMinimum(0);
output.setMaximum(1);
output.setMean(0.4f);
output.setStdDev(.658f);
output.setWekaString(wekaResp);
return output;
}
示例4: classifyMultiLayer
import weka.classifiers.functions.MultilayerPerceptron; //导入方法依赖的package包/类
public MultilayerPerceptron classifyMultiLayer(Instances data) throws Exception {
MultilayerPerceptron layer = new MultilayerPerceptron();
layer.buildClassifier(data);
return layer;
}
示例5: classify
import weka.classifiers.functions.MultilayerPerceptron; //导入方法依赖的package包/类
public void classify() throws Exception {
FileReader trainreader = new FileReader("rawData_biomedical.arff");
Instances train = new Instances(trainreader);
train.setClassIndex(train.numAttributes() - 1);
double accuracy = 0 ;
for (int i = 0; i < 10; i++) {
MultilayerPerceptron mlp = new MultilayerPerceptron();
mlp.setOptions(Utils.splitOptions("-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H 4"));
mlp.buildClassifier(train);
Evaluation eval = new Evaluation(train);
//evaluation.crossValidateModel(rf, trainData, numFolds, new Random(1));
eval.crossValidateModel(mlp, train, 10, new Random(1));
// eval.evaluateModel(mlp, train);
System.out.println(eval.toSummaryString("\nResults\n======\n", false));
trainreader.close();
accuracy += eval.correlationCoefficient();
}
System.out.println("Avg Correlation: " + accuracy/10);
}
示例6: main
import weka.classifiers.functions.MultilayerPerceptron; //导入方法依赖的package包/类
public static void main(String[] args) {
try {
CSVLoader loader = new CSVLoader();
loader.setSource(new File(OJOSECO_FILEPATH));
Instances data = loader.getDataSet();
Normalize normalize = new Normalize();
normalize.setInputFormat(data);
data = Filter.useFilter(data, normalize);
data.setClassIndex(data.numAttributes() - 1);
System.out.println(data.toSummaryString());
data.randomize(new Random(0));
int trainSize = Math.toIntExact(Math.round(data.numInstances() * RATIO_TEST));
int testSize = data.numInstances() - trainSize;
Instances train = new Instances(data, 0, trainSize);
Instances test = new Instances(data, trainSize, testSize);
MultilayerPerceptron mlp = new MultilayerPerceptron();
mlp.setOptions(Utils.splitOptions("-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a"));
mlp.buildClassifier(train);
System.out.println(mlp.toString());
Evaluation eval = new Evaluation(test);
eval.evaluateModel(mlp, test);
System.out.println(eval.toSummaryString());
} catch (Exception e) {
e.printStackTrace();
}
}