本文整理汇总了Java中water.fvec.Frame.names方法的典型用法代码示例。如果您正苦于以下问题:Java Frame.names方法的具体用法?Java Frame.names怎么用?Java Frame.names使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类water.fvec.Frame
的用法示例。
在下文中一共展示了Frame.names方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: unifyFrame
import water.fvec.Frame; //导入方法依赖的package包/类
static Vec unifyFrame(DRFModel.DRFParameters drf, Frame fr, PrepData prep, boolean classification) {
int idx = prep.prep(fr);
if( idx < 0 ) { idx = ~idx; }
String rname = fr._names[idx];
drf._response_column = fr.names()[idx];
Vec resp = fr.vecs()[idx];
Vec ret = null;
if (classification) {
ret = fr.remove(idx);
fr.add(rname,resp.toCategoricalVec());
} else {
fr.remove(idx);
fr.add(rname,resp);
}
return ret;
}
示例2: unifyFrame
import water.fvec.Frame; //导入方法依赖的package包/类
static Vec unifyFrame(DeepLearningParameters drf, Frame fr, PrepData prep, boolean classification) {
int idx = prep.prep(fr);
if( idx < 0 ) { idx = ~idx; }
String rname = fr._names[idx];
drf._response_column = fr.names()[idx];
Vec resp = fr.vecs()[idx];
Vec ret = null;
if (classification) {
ret = fr.remove(idx);
fr.add(rname,resp.toCategoricalVec());
} else {
fr.remove(idx);
fr.add(rname,resp);
}
return ret;
}
示例3: testModelAdaptMissing
import water.fvec.Frame; //导入方法依赖的package包/类
@Test public void testModelAdaptMissing() {
AModel.AParms p = new AModel.AParms();
AModel.AOutput o = new AModel.AOutput();
Vec cat = vec(new String[]{"A","B"},0,1,0,1);
Frame trn = new Frame();
trn.add("cat",cat);
o._names = trn.names();
o._domains = trn.domains();
trn.remove();
AModel am = new AModel(Key.make(),p,o);
Frame tst = new Frame();
tst.add("cat", cat.makeCon(Double.NaN)); // All NAN/missing column
Frame adapt = new Frame(tst);
String[] warns = am.adaptTestForTrain(adapt,true, true);
Assert.assertTrue(warns.length == 0); // No errors during adaption
Model.cleanup_adapt( adapt, tst );
tst.remove();
}
示例4: testModelAdaptConvert
import water.fvec.Frame; //导入方法依赖的package包/类
@Test public void testModelAdaptConvert() {
AModel.AParms p = new AModel.AParms();
AModel.AOutput o = new AModel.AOutput();
Frame trn = new Frame();
trn.add("dog",vec(new String[]{"A","B"},0,1,0,1));
o._names = trn.names();
o._domains = trn.domains();
trn.remove();
AModel am = new AModel(Key.make(),p,o);
Frame tst = new Frame();
tst.add("dog",vec(2, 3, 2, 3));
Frame adapt = new Frame(tst);
boolean saw_iae = false;
try { am.adaptTestForTrain(adapt, true, true); }
catch( IllegalArgumentException iae ) { saw_iae = true; }
Assert.assertTrue(saw_iae);
Model.cleanup_adapt( adapt, tst );
tst.remove();
}
示例5: DTree
import water.fvec.Frame; //导入方法依赖的package包/类
public DTree( Frame fr, int ncols, char nbins, char nbins_cats, char nclass, double min_rows, int mtrys, long seed ) {
_names = fr.names();
_ncols = ncols;
_nbins=nbins;
_nbins_cats=nbins_cats;
_nclass=nclass;
_min_rows = min_rows;
_ns = new Node[1];
_mtrys = mtrys;
_seed = seed;
_rand = SharedTree.createRNG(seed);
_seeds = new long[fr.vecs()[0].nChunks()];
for (int i = 0; i < _seeds.length; i++)
_seeds[i] = _rand.nextLong();
}
示例6: transform
import water.fvec.Frame; //导入方法依赖的package包/类
public Frame transform(Frame f) {
_inNames = f.names();
_inTypes = f.typesStr();
Frame ff = transformImpl(f);
_outTypes= ff.typesStr();
return ff;
}
示例7: execute
import water.fvec.Frame; //导入方法依赖的package包/类
public static Val execute(AST ast) {
// Execute
Env env = new Env();
Val val = ast.exec(env);
// Results. Deep copy returned Vecs. Always return a key-less Frame
if( val.isFrame() ) {
Frame fr = val.getFrame();
if( fr._key != null ) val=new ValFrame(fr = new Frame(null,fr.names(),fr.vecs()));
Vec vecs[] = fr.vecs();
for( int i=0; i<vecs.length; i++ )
if( env.isPreExistingGlobal(vecs[i]) )
fr.replace(i,vecs[i].makeCopy());
}
return val;
}
示例8: toString
import water.fvec.Frame; //导入方法依赖的package包/类
@Override public String toString() {
Frame res = get();
if (res == null) return "Output frame not found";
if (!_pairwise)
return "Created interaction feature " + res.names()[0]
+ " (order: " + _factors.length + ") with " + res.lastVec().domain().length + " factor levels"
+ " in" + PrettyPrint.msecs(_end_time-_start_time, true);
else
return "Created " + res.numCols() + " pair-wise interaction features " + Arrays.deepToString(res.names())
+ " (order: 2) in" + PrettyPrint.msecs(_end_time-_start_time, true);
}
示例9: run
import water.fvec.Frame; //导入方法依赖的package包/类
@Test
public void run() {
// Put chunks into KV store
Frame f = new TestUtil().parse_test_file("smalldata/junit/syn_2659x1049.csv.gz");
// Create two lockable frames in KV store
Frame fr1 = new Frame(Key.make(), f.names(), f.vecs());
Frame fr2 = new Frame(Key.make(), f.names(), f.vecs());
// Lock the frames against writes
fr1.delete_and_lock(null);
fr2.delete_and_lock(null);
int i = 0;
try {
// try to delete the write-locked frames -> will throw an exception
fr1.delete();
fr2.delete(); // won't be reached
} catch (Throwable t) {
Log.info("Correctly unable to delete (was locked): " + t.getClass()); //either AssertionError if local or DistributedException if remote
i++;
} finally {
// second attempt: will unlock and delete properly
new UnlockTask().doAllNodes(); // without this line, there will be a leak (and assertion won't be shown)
fr1.delete();
fr2.delete();
f.delete();
Log.info("Able to delete after unlocking.");
}
Assert.assertTrue(i == 1);
}
示例10: testModelAdaptMultinomial
import water.fvec.Frame; //导入方法依赖的package包/类
@Test public void testModelAdaptMultinomial() {
Frame trn = parse_test_file("smalldata/junit/mixcat_train.csv");
AModel.AParms p = new AModel.AParms();
AModel.AOutput o = new AModel.AOutput();
o._names = trn.names();
o._domains = trn.domains();
trn.remove();
AModel am = new AModel(Key.make(),p,o);
Frame tst = parse_test_file("smalldata/junit/mixcat_test.csv");
Frame adapt = new Frame(tst);
String[] warns = am.adaptTestForTrain(adapt,true, true);
Assert.assertTrue(ArrayUtils.find(warns,"Test/Validation dataset column 'Feature_1' has levels not trained on: [D]")!= -1);
Assert.assertTrue(ArrayUtils.find(warns, "Test/Validation dataset is missing training column 'Const': substituting in a column of NAs") != -1);
Assert.assertTrue(ArrayUtils.find(warns, "Test/Validation dataset is missing training column 'Useless': substituting in a column of NAs") != -1);
Assert.assertTrue(ArrayUtils.find(warns, "Test/Validation dataset column 'Response' has levels not trained on: [W]") != -1);
// Feature_1: merged test & train domains
Assert.assertArrayEquals(adapt.vec("Feature_1").domain(),new String[]{"A","B","C","D"});
// Const: all NAs
Assert.assertTrue(adapt.vec("Const").isBad());
// Useless: all NAs
Assert.assertTrue(adapt.vec("Useless").isBad());
// Response: merged test & train domains
Assert.assertArrayEquals(adapt.vec("Response").domain(),new String[]{"X","Y","Z","W"});
Model.cleanup_adapt( adapt, tst );
tst.remove();
}
示例11: testImputeMissing
import water.fvec.Frame; //导入方法依赖的package包/类
@Test public void testImputeMissing() throws InterruptedException, ExecutionException {
Frame train = null;
double missing_fraction = 0.75;
long seed = 12345;
try {
train = parse_test_file(Key.make("arrests.hex"), "smalldata/pca_test/USArrests.csv");
// Add missing values to the training data
if (missing_fraction > 0) {
Frame frtmp = new Frame(Key.make(), train.names(), train.vecs());
DKV.put(frtmp._key, frtmp); // Need to put the frame (to be modified) into DKV for MissingInserter to pick up
FrameUtils.MissingInserter j = new FrameUtils.MissingInserter(frtmp._key, seed, missing_fraction);
j.execImpl();
j.get(); // MissingInserter is non-blocking, must block here explicitly
DKV.remove(frtmp._key); // Delete the frame header (not the data)
}
PCAModel.PCAParameters parms = new PCAModel.PCAParameters();
parms._train = train._key;
parms._k = 4;
parms._transform = DataInfo.TransformType.NONE;
parms._pca_method = PCAModel.PCAParameters.Method.GramSVD;
parms._impute_missing = true; // Don't skip rows with NA entries, but impute using mean of column
parms._seed = seed;
PCAModel pca = null;
PCA job = null;
try {
job = new PCA(parms);
pca = job.trainModel().get();
} finally {
if (job != null) job.remove();
if (pca != null) pca.remove();
}
} catch(Throwable t) {
t.printStackTrace();
throw new RuntimeException(t);
} finally {
if (train != null) train.delete();
}
}
示例12: run
import water.fvec.Frame; //导入方法依赖的package包/类
@Test public void run() {
Scope.enter();
NFSFileVec nfs = NFSFileVec.make(find_test_file("smalldata/junit/two_spiral.csv"));
Frame frame = ParseDataset.parse(Key.make(), nfs._key);
Log.info(frame);
int resp = frame.names().length-1;
for (boolean sparse : new boolean[]{true, false}) {
for (boolean col_major : new boolean[]{false}) {
if (!sparse && col_major) continue;
Key model_id = Key.make();
// build the model
{
DeepLearningParameters p = new DeepLearningParameters();
p._seed = 0xbabefff;
p._epochs = 600;
p._hidden = new int[]{100};
p._sparse = sparse;
p._col_major = col_major;
p._elastic_averaging = false;
p._activation = DeepLearningParameters.Activation.Tanh;
p._max_w2 = Float.POSITIVE_INFINITY;
p._l1 = 0;
p._l2 = 0;
p._initial_weight_distribution = DeepLearningParameters.InitialWeightDistribution.Normal;
p._initial_weight_scale = 2.5;
p._loss = DeepLearningParameters.Loss.CrossEntropy;
p._train = frame._key;
p._response_column = frame.names()[resp];
Scope.track(frame.replace(resp, frame.vecs()[resp].toCategoricalVec())._key); // Convert response to categorical
DKV.put(frame);
p._valid = null;
p._score_interval = 2;
p._train_samples_per_iteration = 0; //sync once per period
// p._quiet_mode = true;
p._fast_mode = true;
p._ignore_const_cols = true;
p._nesterov_accelerated_gradient = true;
p._score_training_samples = 1000;
p._score_validation_samples = 10000;
p._shuffle_training_data = false;
p._force_load_balance = false;
p._replicate_training_data = false;
p._model_id = model_id;
p._adaptive_rate = true;
p._reproducible = true;
p._rho = 0.99;
p._epsilon = 5e-3;
DeepLearning dl = new DeepLearning(p);
try {
dl.trainModel().get();
} catch (Throwable t) {
t.printStackTrace();
throw new RuntimeException(t);
} finally {
dl.remove();
}
}
// score and check result
{
DeepLearningModel mymodel = DKV.getGet(model_id);
Frame pred = mymodel.score(frame);
ModelMetricsBinomial mm = ModelMetricsBinomial.getFromDKV(mymodel,frame);
double error = mm._auc.defaultErr();
Log.info("Error: " + error);
if (error > 0) {
Assert.fail("Classification error is not 0, but " + error + ".");
}
Assert.assertTrue(mymodel.testJavaScoring(frame,pred,1e-6));
pred.delete();
mymodel.delete();
}
}
}
frame.delete();
Scope.exit();
}