当前位置: 首页>>代码示例>>Java>>正文


Java Arrayx.sortAsc方法代码示例

本文整理汇总了Java中uk.ac.man.cs.choif.extend.Arrayx.sortAsc方法的典型用法代码示例。如果您正苦于以下问题:Java Arrayx.sortAsc方法的具体用法?Java Arrayx.sortAsc怎么用?Java Arrayx.sortAsc使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在uk.ac.man.cs.choif.extend.Arrayx的用法示例。


在下文中一共展示了Arrayx.sortAsc方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: segment

import uk.ac.man.cs.choif.extend.Arrayx; //导入方法依赖的package包/类
/**
 * Given a document as a list of elementary text blocks
 * (usually tokenised sentences), segment the document into n 
 * coherent topic segments. If n is -1, the algorithm
 * will decide the appropriate number of segments by
 * monitoring the rate of increase in segment density.
 * Creation date: (11/05/99 05:55:46)
 * @return String[][] A list of coherent topic segments
 * @param String[] A list of elementary text blocks (usually sentences). Each block is a string of space separated tokens.
 * @param n int Number of segments to make, if -1 then let the algorithm decide.
 * @param s int Size of ranking mask, must be >= 3 and an odd number
 */
//modification par Christine Jacquin le 28/09/10 
//avant: méthode final static , maintenant=> rien
public  String[][][] segment(final String[][] document, final int n, final int s) {
Debugx.msg("C99", "Context vectors...");
	ContextVector[] vectors = normalize(document);
	Debugx.msg("C99", "Similarity matrix...");
	/*System.out.println("context vector");	
	for (int i=0; i<vectors.length;i++){
		System.out.println(vectors[i]);
	}
	*/
	float[][] sim = similarity(vectors);
	vectors = null;
	Debugx.msg("C99", "Rank matrix (" + s + "x" + s + " rank mask)...");
	float[][] rank = rank(sim, s);
	sim = null;
	Debugx.msg("C99", "Sum of rank matrix...");
	float[][] sum = sum(rank);
	rank = null;
	Debugx.msg("C99", "Divisive clustering (" + (n==-1 ? "automatic" : "user") + " termination)...");
	int[] B = Arrayx.sortAsc(boundaries(sum, n));
	sum = null;
	Debugx.msg("C99", "Found " + (B.length+1) + " segments...");
	return split(document, B);
}
 
开发者ID:DrDub,项目名称:uima-text-segmenter,代码行数:38,代码来源:C99LINA.java

示例2: segment

import uk.ac.man.cs.choif.extend.Arrayx; //导入方法依赖的package包/类
/**
 * Given a document as a list of elementary text blocks
 * (usually tokenised sentences), segment the document into n 
 * coherent topic segments. If n is -1, the algorithm
 * will decide the appropriate number of segments by
 * monitoring the rate of increase in segment density.
 * Creation date: (11/05/99 05:55:46)
 * @return String[][] A list of coherent topic segments
 * @param String[] A list of elementary text blocks (usually sentences). Each block is a string of space separated tokens.
 * @param n int Number of segments to make, if -1 then let the algorithm decide.
 * @param s int Size of ranking mask, must be >= 3 and an odd number
 */
public final static String[][][] segment(final String[][] document, final int n, final int s) {
	Debugx.msg("C99", "Context vectors...");
	ContextVector[] vectors = normalize(document);
	Debugx.msg("C99", "Similarity matrix...");
	float[][] sim = similarity(vectors);
	vectors = null;
	Debugx.msg("C99", "Rank matrix (" + s + "x" + s + " rank mask)...");
	float[][] rank = rank(sim, s);
	sim = null;
	Debugx.msg("C99", "Sum of rank matrix...");
	float[][] sum = sum(rank);
	rank = null;
	Debugx.msg("C99", "Divisive clustering (" + (n==-1 ? "automatic" : "user") + " termination)...");
	int[] B = Arrayx.sortAsc(boundaries(sum, n));
	sum = null;
	Debugx.msg("C99", "Found " + (B.length+1) + " segments...");
	return split(document, B);
}
 
开发者ID:DrDub,项目名称:uima-text-segmenter,代码行数:31,代码来源:C99.java

示例3: segmentW

import uk.ac.man.cs.choif.extend.Arrayx; //导入方法依赖的package包/类
/**
 * Given a document as a list of elementary text blocks
 * (usually tokenised sentences), segment the document into n 
 * coherent topic segments. If n is -1, the algorithm
 * will decide the appropriate number of segments by
 * monitoring the rate of increase in segment density.
 * Creation date: (11/05/99 05:55:46)
 * @return String[][] A list of coherent topic segments
 * @param String[] A list of elementary text blocks (usually sentences). Each block is a string of space separated tokens.
 * @param n int Number of segments to make, if -1 then let the algorithm decide.
 * @param s int Size of ranking mask, must be >= 3 and an odd number
 */
public final static String[][][] segmentW(final String[][] document, final int n, final int s) {
	Debugx.msg("C99", "Context vectors...");
	ContextVector tf = new ContextVector();
	ContextVector[] vectors = normalize(document, tf);
	Debugx.msg("C99", "Similarity matrix...");
	EntropyVector ev = new EntropyVector(tf);
	float[][] sim = similarity(vectors, ev);
	vectors = null;
	Debugx.msg("C99", "Rank matrix (" + s + "x" + s + " rank mask)...");
	float[][] rank = rank(sim, s);
	sim = null;
	Debugx.msg("C99", "Sum of rank matrix...");
	float[][] sum = sum(rank);
	rank = null;
	Debugx.msg("C99", "Divisive clustering (" + (n==-1 ? "automatic" : "user") + " termination)...");
	int[] B = Arrayx.sortAsc(boundaries(sum, n));
	sum = null;
	Debugx.msg("C99", "Found " + (B.length+1) + " segments...");
	return split(document, B);
}
 
开发者ID:DrDub,项目名称:uima-text-segmenter,代码行数:33,代码来源:C99.java

示例4: segmentW

import uk.ac.man.cs.choif.extend.Arrayx; //导入方法依赖的package包/类
/**
 * Given a document as a list of elementary text blocks
 * (usually tokenised sentences), segment the document into n 
 * coherent topic segments. If n is -1, the algorithm
 * will decide the appropriate number of segments by
 * monitoring the rate of increase in segment density.
 * Creation date: (11/05/99 05:55:46)
 * @return String[][] A list of coherent topic segments
 * @param String[] A list of elementary text blocks (usually sentences). Each block is a string of space separated tokens.
 * @param n int Number of segments to make, if -1 then let the algorithm decide.
 * @param s int Size of ranking mask, must be >= 3 and an odd number
 */

//modification par Christine Jacquin le 28/09/10 
//avant: méthode final static , maintenant=> rien
public  String[][][] segmentW(final String[][] document, final int n, final int s) {
	Debugx.msg("C99", "Context vectors...");
	ContextVector tf = new ContextVector();
	ContextVector[] vectors = normalize(document, tf);
/*	System.out.println("context vector");
	for (int i=0; i<vectors.length;i++){
		System.out.println(vectors[i]);
	}
	*/
	Debugx.msg("C99", "Similarity matrix...");
	EntropyVector ev = new EntropyVector(tf);
	float[][] sim = similarity(vectors, ev);
	vectors = null;
	Debugx.msg("C99", "Rank matrix (" + s + "x" + s + " rank mask)...");
	float[][] rank = rank(sim, s);
	sim = null;
	Debugx.msg("C99", "Sum of rank matrix...");
	float[][] sum = sum(rank);
	rank = null;
	Debugx.msg("C99", "Divisive clustering (" + (n==-1 ? "automatic" : "user") + " termination)...");
	int[] B = Arrayx.sortAsc(boundaries(sum, n));
	sum = null;
	Debugx.msg("C99", "Found " + (B.length+1) + " segments...");
	return split(document, B);
}
 
开发者ID:DrDub,项目名称:uima-text-segmenter,代码行数:41,代码来源:C99LINA.java


注:本文中的uk.ac.man.cs.choif.extend.Arrayx.sortAsc方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。