当前位置: 首页>>代码示例>>Java>>正文


Java Table.addColumn方法代码示例

本文整理汇总了Java中tech.tablesaw.api.Table.addColumn方法的典型用法代码示例。如果您正苦于以下问题:Java Table.addColumn方法的具体用法?Java Table.addColumn怎么用?Java Table.addColumn使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tech.tablesaw.api.Table的用法示例。


在下文中一共展示了Table.addColumn方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: labeledCentroids

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public Table labeledCentroids() {
    Table table = Table.create("Centroids");
    CategoryColumn labelColumn = new CategoryColumn("Cluster");
    table.addColumn(labelColumn);

    for (NumericColumn inputColumn : inputColumns) {
        FloatColumn centroid = new FloatColumn(inputColumn.name());
        table.addColumn(centroid);
    }

    double[][] centroids = model.centroids();

    for (int i = 0; i < centroids.length; i++) {
        labelColumn.appendCell(String.valueOf(i));
        double[] values = centroids[i];
        for (int k = 0; k < values.length; k++) {
            table.floatColumn(k + 1).append((float) values[k]);
        }
    }
    return table;
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:22,代码来源:Gmeans.java

示例2: labeledCentroids

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public Table labeledCentroids() {
    Table table = Table.create("Centroids");
    CategoryColumn labelColumn = new CategoryColumn("Cluster");
    table.addColumn(labelColumn);

    for (NumericColumn inputColumn : inputColumns) {
        FloatColumn centroid = new FloatColumn(inputColumn.name());
        table.addColumn(centroid);
    }

    double[][] centroids = kMeans.centroids();

    for (int i = 0; i < centroids.length; i++) {
        labelColumn.appendCell(String.valueOf(i));
        double[] values = centroids[i];
        for (int k = 0; k < values.length; k++) {
            table.floatColumn(k + 1).append((float) values[k]);
        }
    }
    return table;
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:22,代码来源:Kmeans.java

示例3: AssociationRuleMining

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public AssociationRuleMining(IntColumn sets, CategoryColumn items, double support) {
    Table temp = Table.create("temp");
    temp.addColumn(sets.copy());
    temp.addColumn(items.toIntColumn());
    temp.sortAscendingOn(sets.name(), items.name());

    ViewGroup baskets = temp.splitOn(temp.column(0));
    int[][] itemsets = new int[baskets.size()][];
    int basketIndex = 0;
    for (TemporaryView basket : baskets) {
        IntRBTreeSet set = new IntRBTreeSet(basket.intColumn(1).data());
        int itemIndex = 0;
        itemsets[basketIndex] = new int[set.size()];
        for (int item : set) {
            itemsets[basketIndex][itemIndex] = item;
            itemIndex++;
        }
        basketIndex++;
    }

    this.model = new ARM(itemsets, support);
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:23,代码来源:AssociationRuleMining.java

示例4: FrequentItemset

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public FrequentItemset(ShortColumn sets, ShortColumn items, double support) {

        Table temp = Table.create("temp");
        temp.addColumn(sets.copy());
        temp.addColumn(items.copy());
        temp.sortAscendingOn(sets.name(), items.name());

        ViewGroup baskets = temp.splitOn(temp.column(0));

        this.setCount = baskets.size();

        int[][] itemsets = new int[setCount][];
        int basketIndex = 0;
        for (TemporaryView basket : baskets) {
            ShortRBTreeSet set = new ShortRBTreeSet(basket.shortColumn(1).data());
            int itemIndex = 0;
            itemsets[basketIndex] = new int[set.size()];
            for (short item : set) {
                itemsets[basketIndex][itemIndex] = item;
                itemIndex++;
            }
            basketIndex++;
        }

        this.model = new FPGrowth(itemsets, support);
    }
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:27,代码来源:FrequentItemset.java

示例5: clustered

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public Table clustered(Column labels) {
    Table table = Table.create("Clusters");
    CategoryColumn labelColumn = new CategoryColumn("Label");
    IntColumn clusterColumn = new IntColumn("Cluster");
    table.addColumn(labelColumn);
    table.addColumn(clusterColumn);
    int[] clusters = kMeans.getClusterLabel();
    for (int i = 0; i < clusters.length; i++) {
        labelColumn.appendCell(labels.getString(i));
        clusterColumn.append(clusters[i]);
    }
    table = table.sortAscendingOn("Cluster", "Label");
    return table;
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:15,代码来源:Kmeans.java

示例6: testWithBooleanColumn

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
@Test
public void testWithBooleanColumn() throws Exception {

    Table example = Table.read().csv("../data/KNN_Example_1.csv");
    BooleanColumn booleanTarget = example.selectIntoColumn("bt", column("Label").isEqualTo(1));
    example.addColumn(booleanTarget);
    Table[] splits = example.sampleSplit(.5);
    Table train = splits[0];
    Table test = splits[1];

    LogisticRegression lr = LogisticRegression.learn(
            train.booleanColumn(3), train.nCol("X"), train.nCol("Y"));

    //TODO(lwhite): Better tests

    int[] predicted = new int[test.rowCount()];
    SortedSet<Object> lableSet = new TreeSet<>(train.shortColumn(2).asSet());
    ConfusionMatrix confusion = new StandardConfusionMatrix(lableSet);
    for (int row : test) {
        double[] data = new double[2];
        data[0] = test.floatColumn(0).getFloat(row);
        data[1] = test.floatColumn(1).getFloat(row);
        predicted[row] = lr.predict(data);
        confusion.increment((int) test.shortColumn(2).get(row), predicted[row]);
    }

    //TODO(lwhite): Better tests
    assertNotNull(confusion);
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:30,代码来源:ConfusionMatrixTest.java

示例7: defineSchema

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
private static Table defineSchema() {
    Table t;
    t = Table.create("Observations");
    CategoryColumn conceptId = new CategoryColumn("concept");
    DateColumn date = new DateColumn("date");
    FloatColumn value = new FloatColumn("value");
    IntColumn patientId = new IntColumn("patient");

    t.addColumn(conceptId);
    t.addColumn(date);
    t.addColumn(value);
    t.addColumn(patientId);
    return t;
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:15,代码来源:TimeDependentFilteringTest.java

示例8: asTable

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public Table asTable() {
    Table table = Table.create(this.name());
    for (Column column : columns()) {
        table.addColumn(column.subset(rowMap));
    }
    return table;
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:8,代码来源:TemporaryView.java

示例9: asTable

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public Table asTable() {
    Table t = Table.create(name);
    CategoryColumn measure = new CategoryColumn("Measure");
    FloatColumn value = new FloatColumn("Value");
    t.addColumn(measure);
    t.addColumn(value);

    measure.add("n");
    value.append(n);

    measure.add("sum");
    value.append(sum());

    measure.add("Mean");
    value.append(mean());

    measure.add("Min");
    value.append(min());

    measure.add("Max");
    value.append(max());

    measure.add("Range");
    value.append(range());

    measure.add("Variance");
    value.append(variance());

    measure.add("Std. Dev");
    value.append(standardDeviation());

    return t;
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:34,代码来源:Stats.java

示例10: read

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
/**
 * Returns a new table with the given tableName, constructed from the given result set
 *
 * @throws SQLException
 */
public static Table read(ResultSet resultSet, String tableName) throws SQLException {

    ResultSetMetaData metaData = resultSet.getMetaData();
    Table table = Table.create(tableName);

    // Setup the columns and add to the table
    for (int i = 1; i <= metaData.getColumnCount(); i++) {
        String name = metaData.getColumnName(i);

        ColumnType type = SQL_TYPE_TO_TABLESAW_TYPE.get(metaData.getColumnType(i));
        Preconditions.checkState(type != null,
                "No column type found for %s as specified for column %s", metaData.getColumnType(i), name);

        Column newColumn = TypeUtils.newColumn(name, type);
        table.addColumn(newColumn);
    }

    // Add the rows
    while (resultSet.next()) {
        for (int i = 1; i <= metaData.getColumnCount(); i++) {
            Column column = table.column(i - 1); // subtract 1 because results sets originate at 1 not 0
            column.appendCell(resultSet.getString(i));
        }
    }
    return table;
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:32,代码来源:SqlResultSetReader.java

示例11: main

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {

        Table ops = Table.create("../data/operations.csv");

        out(ops.structure());

        out(ops);

        DateTimeColumn start = ops.dateColumn("Date").atTime(ops.timeColumn("Start"));
        DateTimeColumn end = ops.dateColumn("Date").atTime(ops.timeColumn("End"));

        for (int row : ops) {
            if (ops.timeColumn("End").get(row).isBefore(ops.timeColumn("Start").get(row))) {
                end.get(row).plusDays(1);
            }
        }

        // Calc duration
        LongColumn duration = start.differenceInSeconds(end);
        ops.addColumn(duration);
        duration.setName("Duration");

        out(ops);

        Table q2_429_assembly = ops.selectWhere(
                allOf
                        (column("date").isInQ2(),
                                (column("SKU").startsWith("429")),
                                (column("Operation").isEqualTo("Assembly"))));

        Table durationByFacilityAndShift = q2_429_assembly.median("Duration").by("Facility", "Shift");

        out(durationByFacilityAndShift);

        durationByFacilityAndShift.write().csv("/tmp/durationByFacilityAndShift.csv");
    }
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:37,代码来源:ServiceExample.java

示例12: main

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {

        // Get the data
        Table baseball = Table.read().csv("../data/baseball.csv");
        out(baseball.structure());

        // filter to the data available in the 2002 season
        Table moneyball = baseball.selectWhere(column("year").isLessThan(2002));

        // plot regular season wins against year, segregating on whether the team made the plays
        NumericColumn wins = moneyball.numericColumn("W");
        NumericColumn year = moneyball.numericColumn("Year");
        Column playoffs = moneyball.column("Playoffs");
        Scatter.show("Regular season wins by year", wins, year, moneyball.splitOn(playoffs));

        // Calculate the run difference for use in the regression model
        IntColumn runDifference = moneyball.shortColumn("RS").subtract(moneyball.shortColumn("RA"));
        moneyball.addColumn(runDifference);
        runDifference.setName("RD");

        // Plot RD vs Wins to see if the relationship looks linear
        Scatter.show("RD x Wins", moneyball.numericColumn("RD"), moneyball.numericColumn("W"));

        // Create the regression model
        //ShortColumn wins = moneyball.shortColumn("W");
        LeastSquares winsModel = LeastSquares.train(wins, runDifference);
        out(winsModel);

        // Make a prediction of how many games we win if we score 135 more runs than our opponents
        double[] testValue = new double[1];
        testValue[0] = 135;
        double prediction = winsModel.predict(testValue);
        out("Predicted wins with RD = 135: " + prediction);

        // Predict runsScored based on On-base percentage, batting average and slugging percentage

        LeastSquares runsScored = LeastSquares.train(moneyball.nCol("RS"),
                moneyball.nCol("OBP"), moneyball.nCol("BA"), moneyball.nCol("SLG"));
        out(runsScored);

        LeastSquares runsScored2 = LeastSquares.train(moneyball.nCol("RS"),
                moneyball.nCol("OBP"), moneyball.nCol("SLG"));
        out(runsScored2);

        Histogram.show(runsScored2.residuals());

        Scatter.fittedVsResidual(runsScored2);
        Scatter.actualVsFitted(runsScored2);

        // We use opponent OBP and opponent SLG to model the efficacy of our pitching and defence

        Table moneyball2 = moneyball.selectWhere(column("year").isGreaterThan(1998));
        LeastSquares runsAllowed = LeastSquares.train(moneyball2.nCol("RA"),
                moneyball2.nCol("OOBP"), moneyball2.nCol("OSLG"));
        out(runsAllowed);

    }
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:58,代码来源:MoneyballExample.java

示例13: setUp

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
@Before
public void setUp() throws Exception {
    Table table = Table.create("Test");
    column1 = new DateColumn("Game date", Locale.ENGLISH);
    table.addColumn(column1);
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:7,代码来源:DateMapUtilsTest.java

示例14: main

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {

        Table table = Table.read().csv(CsvReadOptions
            .builder("../data/movielens.data")
            .separator('\t'));
        out(table.structure());
        out(table.shape());
        ShortColumn movie = table.shortColumn("movie");
        CategoryColumn moviecat = new CategoryColumn("MovieCat");
        for (int i = 0; i < movie.size(); i++) {
            moviecat.appendCell(movie.getString(i));
        }
        table.addColumn(moviecat);

        out(table.shortColumn("user").unique().size());
        out(table.shortColumn("movie").unique().size());

        FrequentItemset model = new FrequentItemset(table.shortColumn("user"), table.categoryColumn("MovieCat"), .24);
        List<ItemSet> itemSetList = model.learn();

        out("Frequent Itemsets");
        for (ItemSet itemSet : itemSetList) {
            if (itemSet.items.length == 2)
                out(itemSet);
        }

        out(model.supportMap(250));

        Object2DoubleOpenHashMap<IntRBTreeSet> confidenceMap = model.confidenceMap(.90);
        Object2DoubleMap.FastEntrySet<IntRBTreeSet> entrySet = confidenceMap.object2DoubleEntrySet();

        out("");
        out("Confidence Map");
        for (Object2DoubleMap.Entry<IntRBTreeSet> entry : entrySet) {
            out(entry.getKey() + " : " + entry.getDoubleValue());
        }

        Object2DoubleOpenHashMap<IntRBTreeSet> confidenceMap2 = model.confidenceMap();
        Object2DoubleMap.FastEntrySet<IntRBTreeSet> entrySet2 = confidenceMap2.object2DoubleEntrySet();

        out("");
        out("Confidence Map2");
        for (Object2DoubleMap.Entry<IntRBTreeSet> entry2 : entrySet2) {
            out(entry2.getKey() + " : " + entry2.getDoubleValue());
        }
    }
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:47,代码来源:FrequentItemsetExample.java

示例15: headerOnly

import tech.tablesaw.api.Table; //导入方法依赖的package包/类
/**
 * Returns a Table constructed from a CSV File with the given file name
 * <p>
 * The @code{fileName} is used as the initial table name for the new table
 *
 * @param types           An array of the types of columns in the file, in the order they appear
 * @param header          Is the first row in the file a header?
 * @param columnSeparator the delimiter
 * @param file        The fully specified file name. It is used to provide a default name for the table
 * @return A Relation containing the data in the csv file.
 * @throws IOException if file cannot be read
 */
public static Table headerOnly(ColumnType types[], boolean header, char columnSeparator, File file)
        throws IOException {

    FileInputStream fis = new FileInputStream(file);       
    // make sure we don't have leading Unicode BOM
    UnicodeBOMInputStream ubis = new UnicodeBOMInputStream(fis);
    ubis.skipBOM();
    
    Reader reader = new InputStreamReader(ubis);
    BufferedReader streamReader = new BufferedReader(reader);

    Table table;
    CSVParser csvParser = new CSVParserBuilder()
            .withSeparator(columnSeparator)
            .build();
    try (CSVReader csvReader = new CSVReaderBuilder(streamReader).withCSVParser(csvParser).build()) {

        String[] nextLine;
        String[] columnNames;
        List<String> headerRow;
        if (header) {
            nextLine = csvReader.readNext();
            headerRow = Lists.newArrayList(nextLine);
            columnNames = selectColumnNames(headerRow, types);
        } else {
            columnNames = makeColumnNames(types);
            headerRow = Lists.newArrayList(columnNames);
        }

        table = Table.create(file.getName());
        for (int x = 0; x < types.length; x++) {
            if (types[x] != SKIP) {
                Column newColumn = TypeUtils.newColumn(headerRow.get(x).trim(), types[x]);
                table.addColumn(newColumn);
            }
        }
        int[] columnIndexes = new int[columnNames.length];
        for (int i = 0; i < columnIndexes.length; i++) {
            // get the index in the original table, which includes skipped fields
            columnIndexes[i] = headerRow.indexOf(columnNames[i]);
        }
    }
    return table;
}
 
开发者ID:jtablesaw,项目名称:tablesaw,代码行数:57,代码来源:CsvReader.java


注:本文中的tech.tablesaw.api.Table.addColumn方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。