本文整理汇总了Java中tberg.murphy.tuple.Pair.getSecond方法的典型用法代码示例。如果您正苦于以下问题:Java Pair.getSecond方法的具体用法?Java Pair.getSecond怎么用?Java Pair.getSecond使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tberg.murphy.tuple.Pair
的用法示例。
在下文中一共展示了Pair.getSecond方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: computeMarginalsScaling
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public static Pair<NodeMarginals,StationaryEdgeMarginals> computeMarginalsScaling(final StationaryLattice lattice, final StationaryStateProjector nodeMarginalsStateProjector, final boolean viterbiEmissionOnly, int numThreads) {
final NodeMarginalsScaling projectedNodeMarginals = new NodeMarginalsScaling(new StationaryLatticeWrapper(lattice), nodeMarginalsStateProjector);
final StationaryEdgeMarginalsScaling edgeMarginals = (viterbiEmissionOnly ? null : new StationaryEdgeMarginalsScaling(lattice));
BetterThreader.Function<Integer,Object> func = new BetterThreader.Function<Integer,Object>(){public void call(Integer d, Object ignore){
Pair<float[][],float[]> alphasAndScales = doPassScaling(new StationaryLatticeWrapper(lattice), false, viterbiEmissionOnly, d);
float[][] alphas = alphasAndScales.getFirst();
float [] alphaLogScales = alphasAndScales.getSecond();
Pair<float[][],float[]> betasAndScales = doPassScaling(new StationaryLatticeWrapper(lattice), true, viterbiEmissionOnly, d);
float[][] betas = betasAndScales.getFirst();
float [] betaLogScales = betasAndScales.getSecond();
projectedNodeMarginals.incrementExpectedCounts(alphas, alphaLogScales, betas, betaLogScales, d, viterbiEmissionOnly);
if (!viterbiEmissionOnly) edgeMarginals.incrementExpectedCounts(alphas, alphaLogScales, betas, betaLogScales, d);
}};
BetterThreader<Integer,Object> threader = new BetterThreader<Integer,Object>(func, numThreads);
for (int d=0; d<lattice.numSequences(); ++d) threader.addFunctionArgument(d);
threader.run();
// System.out.printf("Estimated node marginals size: %.3fgb\n", projectedNodeMarginals.estimateMemoryUsage());
// if (!viterbiEmissionOnly) System.out.printf("Estimated edge marginals size: %.3fgb\n", edgeMarginals.estimateMemoryUsage());
return Pair.makePair((NodeMarginals) projectedNodeMarginals, (StationaryEdgeMarginals) edgeMarginals);
}
示例2: computeMarginalsScaling
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public static Pair<NodeMarginals,StationaryEdgeMarginals> computeMarginalsScaling(final StationaryLattice lattice, final StationaryStateProjector nodeMarginalsStateProjector, final boolean viterbiEmissionOnly, int numThreads) {
final NodeMarginalsScaling projectedNodeMarginals = new NodeMarginalsScaling(new StationaryLatticeWrapper(lattice), nodeMarginalsStateProjector);
final StationaryEdgeMarginalsScaling edgeMarginals = (viterbiEmissionOnly ? null : new StationaryEdgeMarginalsScaling(lattice));
BetterThreader.Function<Integer,Object> func = new BetterThreader.Function<Integer,Object>(){public void call(Integer d, Object ignore){
Pair<double[][],double[]> alphasAndScales = doPassScaling(new StationaryLatticeWrapper(lattice), false, viterbiEmissionOnly, d);
double[][] alphas = alphasAndScales.getFirst();
double [] alphaLogScales = alphasAndScales.getSecond();
Pair<double[][],double[]> betasAndScales = doPassScaling(new StationaryLatticeWrapper(lattice), true, viterbiEmissionOnly, d);
double[][] betas = betasAndScales.getFirst();
double [] betaLogScales = betasAndScales.getSecond();
projectedNodeMarginals.incrementExpectedCounts(alphas, alphaLogScales, betas, betaLogScales, d, viterbiEmissionOnly);
if (!viterbiEmissionOnly) edgeMarginals.incrementExpectedCounts(alphas, alphaLogScales, betas, betaLogScales, d);
}};
BetterThreader<Integer,Object> threader = new BetterThreader<Integer,Object>(func, numThreads);
for (int d=0; d<lattice.numSequences(); ++d) threader.addFunctionArgument(d);
threader.run();
// System.out.printf("Estimated node marginals size: %.3fgb\n", projectedNodeMarginals.estimateMemoryUsage());
// if (!viterbiEmissionOnly) System.out.printf("Estimated edge marginals size: %.3fgb\n", edgeMarginals.estimateMemoryUsage());
return Pair.makePair((NodeMarginals) projectedNodeMarginals, (StationaryEdgeMarginals) edgeMarginals);
}
示例3: test
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public static void test(DifferentiableFunction func, double[] x, double relEps, double delInitial, double delMin) {
double[] nextX = a.copy(x);
Pair<Double,double[]> valAndGrad = func.calculate(x);
double baseVal = valAndGrad.getFirst();
double[] grad = valAndGrad.getSecond();
for (int i=0; i<x.length; ++i) {
double delta = delInitial;
boolean ok = false;
double empDeriv = 0.0;
while (delta > delMin && !ok) {
nextX[i] += delta;
double nextVal = func.calculate(nextX).getFirst();
empDeriv = (nextVal - baseVal) / delta;
if (close(empDeriv, grad[i], relEps)) {
System.out.printf("Gradient ok for dim %d, delta %f, calculated %f, empirical: %f\n", i, delta, grad[i], empDeriv);
ok = true;
}
nextX[i] -= delta;
if (!ok) delta /= 2.0;
}
if (!ok) System.out.printf("Empirical gradient step-size underflow dim %d, delta %.12f, calculated %.12f, empirical: %.12f\n", i, delta, grad[i], empDeriv);
}
}
示例4: minimize
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public double[] minimize(List<DifferentiableFunction> functions, double[] initial, boolean verbose, Callback iterCallbackFunction) {
Random rand = new Random(0);
double[] guess = a.copy(initial);
double update = 0;
for (int epoch=0; epoch<epochs; ++epoch) {
double valSum = 0.0;
double[] gradSum = new double[guess.length];
int[] indices = a.shuffle(a.enumerate(0, functions.size()), rand);
for (int funcIndex : indices) {
DifferentiableFunction func = functions.get(funcIndex);
Pair<Double,double[]> valAndGrad = func.calculate(guess);
valSum += valAndGrad.getFirst();
double[] grad = valAndGrad.getSecond();
double learningRate = startLearningRate + update/(epochs*functions.size()) * (endLearningRate - startLearningRate);
a.combi(guess, 1.0, grad, -learningRate);
a.combi(gradSum, 1.0, grad, 1.0);
update++;
}
if (verbose) System.out.println(String.format("[SGDMinimizer.minimize] Epoch %d ended with value %.6f", epoch, valSum));
if (iterCallbackFunction != null) iterCallbackFunction.callback(guess, epoch, valSum, gradSum);
}
return guess;
}
示例5: lineSearch
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
private static Pair<double[],Double> lineSearch(DifferentiableFunction function, double[] initial, double[] direction, double initialStepSize, double stepSizeMultiplier) {
double stepSize = initialStepSize;
Pair<Double,double[]> initialValAndGrad = function.calculate(initial);
double val = initialValAndGrad.getFirst();
final double[] grad = initialValAndGrad.getSecond();
double initialDirectionalDerivative = a.innerProd(grad, direction);
double gradMax = a.max(a.abs(grad));
double[] guess = null;
double guessValue = 0.0;
boolean sufficientDecreaseObtained = false;
while (!sufficientDecreaseObtained) {
guess = a.comb(initial, 1.0, direction, stepSize);
guessValue = function.calculate(guess).getFirst();
double sufficientDecreaseValue = val + LINE_SEARCH_SUFF_DECR * initialDirectionalDerivative * stepSize;
sufficientDecreaseObtained = (guessValue <= sufficientDecreaseValue + EPS);
if (!sufficientDecreaseObtained) {
if (stepSize < EPS && stepSize * gradMax < EPS) {
System.out.printf("[LBFGSMinimizer.minimize]: Line search step size underflow: %.15f, %.15f, %.15f, %.15f, %.15f, %.15f\n", stepSize, initialDirectionalDerivative, gradMax, guessValue, sufficientDecreaseValue, val);
return null;
}
stepSize *= stepSizeMultiplier;
}
}
return Pair.makePair(guess, stepSize);
}
示例6: minimize
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public float[] minimize(List<DifferentiableFunction> functions, float[] initial, boolean verbose, Callback iterCallbackFunction) {
Random rand = new Random(0);
float[] guess = a.copy(initial);
double update = 0;
for (int epoch=0; epoch<epochs; ++epoch) {
double valSum = 0.0;
int[] indices = a.shuffle(a.enumerate(0, functions.size()), rand);
for (int funcIndex : indices) {
DifferentiableFunction func = functions.get(funcIndex);
Pair<Double,CounterInterface<Integer>> valAndGrad = func.calculate(guess);
valSum += valAndGrad.getFirst();
CounterInterface<Integer> grad = valAndGrad.getSecond();
double learningRate = startLearningRate + update/(epochs*functions.size()) * (endLearningRate - startLearningRate);
for (Map.Entry<Integer,Double> entry : grad.entries()) {
guess[entry.getKey()] += -learningRate * entry.getValue();
}
update++;
}
if (verbose) System.out.println(String.format("[SGDMinimizer.minimize] Epoch %d ended with value %.6f", epoch, valSum));
if (iterCallbackFunction != null) iterCallbackFunction.callback(guess, epoch, valSum);
}
return guess;
}
示例7: preprocessDatum
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
private static ProcDatum preprocessDatum(Datum datum, float[][] spectralAtoms) {
Pair<float[][],Float> spectAndSecondsPerFrame = computeSpect(datum.wave);
float[][] spect = spectAndSecondsPerFrame.getFirst();
float secondsPerFrame = spectAndSecondsPerFrame.getSecond();
float[][] activations = null;
if (Main.nmfType == NMFType.KL) {
activations = (Main.useGpu ? NMFUtilOpenCL.nmfKLGPU(spectralAtoms, false, a.onesFloat(spect.length, spectralAtoms.length), true, spect, Main.nmfNumIters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps).getSecond() : NMFUtilOpenCL.nmfKL(spectralAtoms, false, a.onesFloat(spect.length, spectralAtoms.length), true, spect, Main.nmfNumIters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps).getSecond());
} else if (Main.nmfType == NMFType.Beta) {
activations = (Main.useGpu ? NMFUtilOpenCL.nmfBetaGPU(spectralAtoms, false, a.onesFloat(spect.length, spectralAtoms.length), true, spect, Main.nmfNumIters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps, (float) Main.nmfBeta).getSecond() : NMFUtilOpenCL.nmfBeta(spectralAtoms, false, a.onesFloat(spect.length, spectralAtoms.length), true, spect, Main.nmfNumIters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps, (float) Main.nmfBeta).getSecond());
} else if (Main.nmfType == NMFType.LogNormal) {
float startStepSize = 1e-7f;
float endStepSize = 1e-7f;
float init = 1e-5f;
activations = (Main.useGpu ? NMFUtilOpenCL.nmfLogNormalExpGradGPU(spectralAtoms, false, a.scale(a.onesFloat(spect.length, spectralAtoms.length), init), true, spect, startStepSize, endStepSize, Main.nmfNumIters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps, (float) Main.nmfC).getSecond() : NMFUtilOpenCL.nmfLogNormalExpGrad(spectralAtoms, false, a.scale(a.onesFloat(spect.length, spectralAtoms.length), init), true, spect, startStepSize, endStepSize, Main.nmfNumIters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps, (float) Main.nmfC).getSecond());
} else {
activations = (Main.useGpu ? NMFUtilOpenCL.nmfL2GPU(spectralAtoms, false, a.onesFloat(spect.length, spectralAtoms.length), true, spect, Main.nmfNumIters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps).getSecond() : NMFUtilOpenCL.nmfL2(spectralAtoms, false, a.onesFloat(spect.length, spectralAtoms.length), true, spect, Main.nmfNumIters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps).getSecond());
}
if (ACTIVATIONS_POW) {
a.powi(activations, POW);
}
if (ACTIVATIONS_DIVIDE_BY_MAX) {
divideByMax(activations);
}
if (ACTIVATIONS_STRETCH_TO_UNIT) {
stretchToUnit(activations);
}
if (ACTIVATIONS_LOG) {
logSpace(activations);
stretchToUnit(activations);
}
if (ACTIVATIONS_SCALE) {
a.scalei(activations, SCALE);
}
if (ACTIVATIONS_BUCKET) {
bucket(activations);
}
return new ProcDatum(datum, spect, activations, secondsPerFrame);
}
示例8: Clustering
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public Clustering(File corpusRoot) {
knownChords = new HashSet<Chord>();
List<List<Chord>> sequences = loadSongs(corpusRoot);
featIndexer = new HashMapIndexer<String>();
chordIndexer = new HashMapIndexer<Chord>();
System.out.println("loaded activations");
Pair<int[][][], double[][][]> chordFeatures = computeChordFeatures();
chordFeatIndices = chordFeatures.getFirst();
chordFeatValues = chordFeatures.getSecond();
System.out.println("computed chord features");
Pair<int[][][][], double[][][][]> emissionFeatures = computeEmissionFeatures(sequences);
emissionFeatIndices = emissionFeatures.getFirst();
emissionFeatValues = emissionFeatures.getSecond();
System.out.println("computed emission features");
//System.out.println(sequences);
//System.out.println(emissionFeatIndices.length);
//System.out.println(emissionFeatIndices[0].length);
//System.out.println(emissionFeatIndices[0][0].length);
//System.out.println(emissionFeatIndices[0][0][0].length);
Pair<int[][][], double[][][]> transitionFeatures = computeTransitionFeatures(sequences);
transitionFeatIndices = transitionFeatures.getFirst();
transitionFeatValues = transitionFeatures.getSecond();
System.out.println("computed transition features");
}
示例9: IMSLPIndepTransitionReader
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public IMSLPIndepTransitionReader(File corpusRoot) {
loadSongs(corpusRoot);
//int[] lengthCounts = new int[1000];
//for (boolean[][] m : activations) {
// int offset = 0;
// int counter = 0;
// //System.out.println(m.length);
// for (int pitch = 0; pitch < m[0].length; pitch++) {
// while (offset < m.length && m[offset][pitch]) {
// offset++; }
// while (offset + counter < m.length && !m[offset + counter][pitch]) {
// counter++; }
// //while (m[offset++][pitch]) { if (offset >= m.length) break; }
// //while (m[offset + counter++][pitch]) { if (offset + counter >= m.length) break; }
// counter /= 10;
// counter = Math.min(counter, lengthCounts.length-1);
// lengthCounts[counter]++;
// offset = offset + counter;
// counter = 0;
// }
//}
//System.out.println(a.toString(lengthCounts));
//System.exit(1);
transitionScores = computeTransitionScores();
Pair<double[], double[]> meansAndVars = computeStats();
widthMeans = meansAndVars.getFirst();
widthVars = meansAndVars.getSecond();
}
示例10: decode
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public static Pair<TransitionState[],int[]> decode(EmissionModel emissionModel, TransitionModel transitionModel, int beamSize) {
GeneralPriorityQueue<SparseSemiMarkovDP.BeamState>[] alphas = doForwardPass(emissionModel, transitionModel, beamSize);
Pair<TransitionState[],int[]> statesAndWidths = followBackpointers(alphas, emissionModel);
TransitionState[] decodeStates = statesAndWidths.getFirst();
int[] decodeWidths = statesAndWidths.getSecond();
return Pair.makePair(decodeStates, decodeWidths);
}
示例11: addNullBackpointers
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
private static Collection<BeamState> addNullBackpointers(Collection<Pair<TransitionState,Double>> without) {
List<BeamState> with = new ArrayList<BeamState>();
for (Pair<TransitionState,Double> startPair : without) {
BeamState beamState = new BeamState(startPair.getFirst());
beamState.score = startPair.getSecond();
beamState.backPointer = Pair.makePair(-1, null);
with.add(beamState);
}
return with;
}
示例12: followBackpointers
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
private static Pair<TransitionState[],int[]> followBackpointers(GeneralPriorityQueue<SparseSemiMarkovDP.BeamState>[] alphas, EmissionModel emissionModel) {
List<TransitionState> transStateDecodeList = new ArrayList<TransitionState>();
List<Integer> widthsDecodeList = new ArrayList<Integer>();
TransitionState bestFinalTs = null;
double bestFinalScore = Double.NEGATIVE_INFINITY;
for (BeamState beamState : alphas[emissionModel.sequenceLength()].getObjects()) {
double score = beamState.score + beamState.transState.endScore();
if (score > bestFinalScore) {
bestFinalScore = score;
bestFinalTs = beamState.transState;
}
}
int currentT = emissionModel.sequenceLength();
TransitionState currentTs = bestFinalTs;
while (true) {
Pair<Integer,TransitionState> backpointer = alphas[currentT].getObject(new BeamState(currentTs)).backPointer;
int width = currentT - backpointer.getFirst();
transStateDecodeList.add(currentTs);
widthsDecodeList.add(width);
currentT = backpointer.getFirst();
currentTs = backpointer.getSecond();
if (currentT == 0) {
break;
}
}
Collections.reverse(transStateDecodeList);
Collections.reverse(widthsDecodeList);
int[] widthsDecode = a.toIntArray(widthsDecodeList);
return Pair.makePair(transStateDecodeList.toArray(new TransitionState[0]), widthsDecode);
}
示例13: minimize
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public double[] minimize(List<DifferentiableFunction> functions, double[] initial, boolean verbose, Callback iterCallbackFunction) {
Random rand = new Random(0);
double[] guess = a.copy(initial);
double[] sqrGradSum = new double[guess.length];
a.addi(sqrGradSum, delta);
final double r = eta * regConstant;
for (int epoch=0; epoch<epochs; ++epoch) {
double epochValSum = 0.0;
double[] epochGradSum = new double[guess.length];
for (int funcIndex : a.shuffle(a.enumerate(0, functions.size()), rand)) {
DifferentiableFunction func = functions.get(funcIndex);
Pair<Double,double[]> valAndGrad = func.calculate(guess);
epochValSum += valAndGrad.getFirst();
double[] grad = valAndGrad.getSecond();
a.combi(epochGradSum, 1.0, grad, 1.0);
double[] sqrGrad = a.sqr(grad);
a.combi(sqrGradSum, 1.0, sqrGrad, 1.0);
for (int i=0; i<guess.length; ++i) {
double s = Math.sqrt(sqrGradSum[i]);
guess[i] = (s * guess[i] - eta * grad[i]) / (r + s);
}
}
if (verbose) System.out.println(String.format("[AdaGradMinimizer.minimize] Epoch %d ended with value %.6f", epoch, epochValSum + regConstant * a.innerProd(guess, guess)));
if (iterCallbackFunction != null) iterCallbackFunction.callback(guess, epoch, epochValSum, epochGradSum);
}
return guess;
}
示例14: minimize
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
public double[] minimize(List<DifferentiableFunction> functions, double[] initial, boolean verbose, Callback iterCallbackFunction) {
Random rand = new Random(0);
double[] guess = a.copy(initial);
double[] sqrGradSum = new double[guess.length];
a.addi(sqrGradSum, delta);
final double r = eta * regConstant;
for (int epoch=0; epoch<epochs; ++epoch) {
double epochValSum = 0.0;
double[] epochGradSum = new double[guess.length];
for (int funcIndex : a.shuffle(a.enumerate(0, functions.size()), rand)) {
DifferentiableFunction func = functions.get(funcIndex);
Pair<Double,double[]> valAndGrad = func.calculate(guess);
epochValSum += valAndGrad.getFirst();
double[] grad = valAndGrad.getSecond();
a.combi(epochGradSum, 1.0, grad, 1.0);
double[] sqrGrad = a.sqr(grad);
a.combi(sqrGradSum, 1.0, sqrGrad, 1.0);
for (int i=0; i<guess.length; ++i) {
double s = Math.sqrt(sqrGradSum[i]);
double xHalf = guess[i] - (eta/s)*grad[i];
double x = Math.abs(xHalf) - (r/s);
if (x > 0) {
guess[i] = (xHalf > 0 ? 1.0 : -1.0) * x;
} else {
guess[i] = 0.0;
}
}
}
if (verbose) System.out.println(String.format("[AdaGradMinimizer.minimize] Epoch %d ended with value %.6f", epoch, epochValSum + regConstant * a.sum(a.abs(guess))));
if (iterCallbackFunction != null) iterCallbackFunction.callback(guess, epoch, epochValSum, epochGradSum);
}
return guess;
}
示例15: buildSpectralAtomsAndEnvelopes
import tberg.murphy.tuple.Pair; //导入方法依赖的package包/类
private static Pair<Pair<float[][],float[][]>,Float> buildSpectralAtomsAndEnvelopes(String notesBasePath, String notesPaths, String instrName) {
JaggedMatrixAverager spectralAtomsAvg = new JaggedMatrixAverager(PitchEventIO.N_MIDI_PITCH_IDS);
JaggedMatrixAverager envelopesAvg = new JaggedMatrixAverager(PitchEventIO.N_MIDI_PITCH_IDS);
float secondsPerFrame = 0.0f;
for (String notesPath : notesPaths.trim().split(":")) {
List<Datum> data = DatasetIO.readLabeledData(notesBasePath+"/"+instrName+"/"+notesPath, Float.POSITIVE_INFINITY);
System.out.println(notesBasePath+"/"+instrName+"/"+notesPath+" num: "+data.size());
for (Datum datum : data) {
Pair<float[][],Float> spectAndSecondsPerFrame = computeSpect(datum.wave);
float[][] spect = spectAndSecondsPerFrame.getFirst();
secondsPerFrame = spectAndSecondsPerFrame.getSecond();
for (int i=0; i<datum.events.size(); ++i) {
int noteIndex = datum.events.get(i).noteIndex;
if (noteIndex >= 0 && noteIndex < PitchEventIO.N_MIDI_PITCH_IDS) {
List<float[]> subSpectList = new ArrayList<float[]>();
for (int t : PitchEventUtil.framesByOverlap(datum.events.get(i).onsetSec + ((float) Main.initSpectEnvNotesOffsetMs * 1e-3f), datum.events.get(i).offsetSec + ((float) Main.initSpectEnvNotesOffsetMs * 1e-3f), secondsPerFrame, 0, spect.length-1)) {
// for (int t : PitchEventUtil.framesByCenterWithinInterval(datum.events.get(i).onsetSec + ((float) Main.notesOffsetMs * 1e-3f), datum.events.get(i).offsetSec + ((float) Main.notesOffsetMs * 1e-3f), secondsPerFrame, 0, spect.length-1)) {
subSpectList.add(spect[t]);
}
if (subSpectList.isEmpty()) continue;
float[][] subSpect = subSpectList.toArray(new float[0][]);
Pair<float[][],float[][]> atomAndEnvelope = null;
if (Main.nmfType == NMFType.KL) {
atomAndEnvelope = NMFUtilOpenCL.nmfKL(subSpect, 1, 20, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps);
} else if (Main.nmfType == NMFType.Beta) {
atomAndEnvelope = NMFUtilOpenCL.nmfBeta(subSpect, 1, 20, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps, (float) Main.nmfBeta);
} else if (Main.nmfType == NMFType.LogNormal) {
int iters = 2000;
float startStepSize = 1e-8f;
float endStepSize = 1e-8f;
float init = 1e-5f;
atomAndEnvelope = NMFUtilOpenCL.nmfLogNormalExpGrad(a.scale(a.onesFloat(1, subSpect[0].length), init), true, a.scale(a.onesFloat(subSpect.length, 1), init), true, subSpect, startStepSize, endStepSize, iters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps, (float) Main.nmfC);
while (a.hasinf(atomAndEnvelope.getFirst()) || a.hasnan(atomAndEnvelope.getFirst()) || a.hasinf(atomAndEnvelope.getSecond()) || a.hasnan(atomAndEnvelope.getSecond())) {
startStepSize *= 0.8;
endStepSize *= 0.8;
atomAndEnvelope = NMFUtilOpenCL.nmfLogNormalExpGrad(a.scale(a.onesFloat(1, subSpect[0].length), init), true, a.scale(a.onesFloat(subSpect.length, 1), init), true, subSpect, startStepSize, endStepSize, iters, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps, (float) Main.nmfC);
}
} else {
atomAndEnvelope = NMFUtilOpenCL.nmfL2(subSpect, 1, 20, (float) Main.nmfSilenceEps, (float) Main.nmfMinEps);
}
float[] atom = atomAndEnvelope.getFirst()[0];
float[] envelope = a.transpose(atomAndEnvelope.getSecond())[0];
// a.scalei(atom, 1.0f / a.max(atom));
// a.scalei(atom, 1.0f / a.sum(atom));
a.scalei(atom, 1.0f / (float) Math.sqrt(a.sum(a.sqr(atom))));
spectralAtomsAvg.observe(noteIndex, atom);
a.scalei(envelope, 1.0f / a.max(envelope));
envelopesAvg.observe(noteIndex, envelope);
}
}
}
}
return Pair.makePair(Pair.makePair(spectralAtomsAvg.getAverage(), envelopesAvg.getAverage()), secondsPerFrame);
}