本文整理汇总了Java中org.spongycastle.math.ec.ECCurve.Fp方法的典型用法代码示例。如果您正苦于以下问题:Java ECCurve.Fp方法的具体用法?Java ECCurve.Fp怎么用?Java ECCurve.Fp使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.spongycastle.math.ec.ECCurve
的用法示例。
在下文中一共展示了ECCurve.Fp方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: byteArrayToECPoint
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
private static ECPoint byteArrayToECPoint(final byte[] value, final ECCurve.Fp curve)
throws IllegalArgumentException {
final byte[] x = new byte[(value.length - 1) / 2];
final byte[] y = new byte[(value.length - 1) / 2];
if (value[0] != (byte) 0x04) {
throw new IllegalArgumentException("No uncompressed Point found!"); //$NON-NLS-1$
}
System.arraycopy(value, 1, x, 0, (value.length - 1) / 2);
System.arraycopy(value, 1 + (value.length - 1) / 2, y, 0,
(value.length - 1) / 2);
final ECFieldElement.Fp xE = (org.spongycastle.math.ec.ECFieldElement.Fp) curve.fromBigInteger(new BigInteger(1, x));
final ECFieldElement.Fp yE = (org.spongycastle.math.ec.ECFieldElement.Fp) curve.fromBigInteger(new BigInteger(1, y));
final ECPoint point = curve.createPoint(xE.toBigInteger(), yE.toBigInteger());
return point;
}
示例2: decompressKey
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/** Decompress a compressed public key (x co-ord and low-bit of y-coord). */
private static ECPoint decompressKey(BigInteger xBN, boolean yBit) {
// This code is adapted from Bouncy Castle ECCurve.Fp.decodePoint(), but it wasn't easily re-used.
ECCurve.Fp curve = (ECCurve.Fp) ecParams.getCurve();
ECFieldElement x = new ECFieldElement.Fp(curve.getQ(), xBN);
ECFieldElement alpha = x.multiply(x.square().add(curve.getA())).add(curve.getB());
ECFieldElement beta = alpha.sqrt();
// If we can't find a sqrt we haven't got a point on the curve - invalid inputs.
if (beta == null)
throw new IllegalArgumentException("Invalid point compression");
if (beta.toBigInteger().testBit(0) == yBit) {
return new ECPoint.Fp(curve, x, beta, true);
} else {
ECFieldElement.Fp y = new ECFieldElement.Fp(curve.getQ(), curve.getQ().subtract(beta.toBigInteger()));
return new ECPoint.Fp(curve, x, y, true);
}
}
示例3: decompressKey
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/** Decompress a compressed public key (x co-ord and low-bit of y-coord). */
private static ECPoint decompressKey(BigInteger xBN, boolean yBit) {
// This code is adapted from Bouncy Castle ECCurve.Fp.decodePoint(), but it wasn't easily re-used.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
ECFieldElement x = new ECFieldElement.Fp(curve.getQ(), xBN);
ECFieldElement alpha = x.multiply(x.square().add(curve.getA())).add(curve.getB());
ECFieldElement beta = alpha.sqrt();
// If we can't find a sqrt we haven't got a point on the curve - invalid inputs.
if (beta == null)
throw new IllegalArgumentException("Invalid point compression");
if (beta.toBigInteger().testBit(0) == yBit) {
return new ECPoint.Fp(curve, x, beta, true);
} else {
ECFieldElement.Fp y = new ECFieldElement.Fp(curve.getQ(), curve.getQ().subtract(beta.toBigInteger()));
return new ECPoint.Fp(curve, x, y, true);
}
}
示例4: decompressKey
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* Decompress a compressed public key (x co-ord and low-bit of y-coord).
*/
private static ECPoint decompressKey(BigInteger xBN, boolean yBit) {
// This code is adapted from Bouncy Castle ECCurve.Fp.decodePoint(), but it wasn't easily re-used.
ECCurve.Fp curve = (ECCurve.Fp) ecParams.getCurve();
ECFieldElement x = new ECFieldElement.Fp(curve.getQ(), xBN);
ECFieldElement alpha = x.multiply(x.square().add(curve.getA())).add(curve.getB());
ECFieldElement beta = alpha.sqrt();
// If we can't find a sqrt we haven't got a point on the curve - invalid inputs.
if (beta == null)
throw new IllegalArgumentException("Invalid point compression");
if (beta.toBigInteger().testBit(0) == yBit) {
return new ECPoint.Fp(curve, x, beta, true);
} else {
ECFieldElement.Fp y = new ECFieldElement.Fp(curve.getQ(), curve.getQ().subtract(beta.toBigInteger()));
return new ECPoint.Fp(curve, x, y, true);
}
}
示例5: toBouncyCastleECCurve
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
private static ECCurve toBouncyCastleECCurve(final ECParameterSpec params) {
final EllipticCurve curve = params.getCurve();
final ECField field = curve.getField();
if (!(field instanceof ECFieldFp)) {
throw new IllegalArgumentException(
"Solo se soporta 'ECFieldFp' y se proporciono " + field.getClass().getCanonicalName() //$NON-NLS-1$
);
}
final int coFactor = params.getCofactor();
final BigInteger order = params.getOrder();
final BigInteger a = curve.getA();
final BigInteger b = curve.getB();
final BigInteger p = getPrime(params);
return new ECCurve.Fp(p, a, b, order, BigInteger.valueOf(coFactor));
}
示例6: toSpongyCastleECCurve
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
private static ECCurve toSpongyCastleECCurve(final ECParameterSpec params) {
final EllipticCurve curve = params.getCurve();
final ECField field = curve.getField();
if (!(field instanceof ECFieldFp)) {
throw new IllegalArgumentException(
"Solo se soporta 'ECFieldFp' y se proporciono " + field.getClass().getCanonicalName() //$NON-NLS-1$
);
}
final int coFactor = params.getCofactor();
final BigInteger order = params.getOrder();
final BigInteger a = curve.getA();
final BigInteger b = curve.getB();
final BigInteger p = getPrime(params);
return new ECCurve.Fp(p, a, b, order, BigInteger.valueOf(coFactor));
}
示例7: recoverPubBytesFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param messageHash Hash of the data that was signed.
* @return 65-byte encoded public key
*/
@Nullable
public static byte[] recoverPubBytesFromSignature(int recId, ECDSASignature sig, byte[] messageHash) {
check(recId >= 0, "recId must be positive");
check(sig.r.signum() >= 0, "r must be positive");
check(sig.s.signum() >= 0, "s must be positive");
check(messageHash != null, "messageHash must not be null");
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = CURVE.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = new BigInteger(1, messageHash);
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint.Fp q = (ECPoint.Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
return q.getEncoded(/* compressed */ false);
}
示例8: recoverPubBytesFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param messageHash Hash of the data that was signed.
* @return 65-byte encoded public key
*/
@Nullable public static byte[] recoverPubBytesFromSignature(int recId, ECDSASignature sig,
byte[] messageHash) {
check(recId >= 0, "recId must be positive");
check(sig.r.signum() >= 0, "r must be positive");
check(sig.s.signum() >= 0, "s must be positive");
check(messageHash != null, "messageHash must not be null");
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = CURVE.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
BigInteger prime =
curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n)
.isInfinity()) {
return null;
}
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = new BigInteger(1, messageHash);
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e)
.mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s)
.mod(n);
BigInteger eInvrInv = rInv.multiply(eInv)
.mod(n);
Fp q = (Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
return q.getEncoded(/* compressed */ false);
}
示例9: recoverFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param message Hash of the data that was signed.
* @param compressed Whether or not the original pubkey was compressed.
* @return An ECKey containing only the public part, or null if recovery wasn't possible.
*/
public static ECKey recoverFromSignature(int recId, ECDSASignature sig, Sha256Hash message, boolean compressed) {
Preconditions.checkArgument(recId >= 0, "recId must be positive");
Preconditions.checkArgument(sig.r.compareTo(BigInteger.ZERO) >= 0, "r must be positive");
Preconditions.checkArgument(sig.s.compareTo(BigInteger.ZERO) >= 0, "s must be positive");
Preconditions.checkNotNull(message);
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = ecParams.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) ecParams.getCurve();
BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = message.toBigInteger();
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint p1 = ecParams.getG().multiply(eInvrInv);
ECPoint p2 = R.multiply(srInv);
ECPoint.Fp q = (ECPoint.Fp) p2.add(p1);
if (compressed) {
// We have to manually recompress the point as the compressed-ness gets lost when multiply() is used.
q = new ECPoint.Fp(curve, q.getX(), q.getY(), true);
}
return new ECKey((byte[])null, q.getEncoded());
}
示例10: recoverFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param message Hash of the data that was signed.
* @param compressed Whether or not the original pubkey was compressed.
* @return An ECKey containing only the public part, or null if recovery wasn't possible.
*/
@Nullable
public static ECKey recoverFromSignature(int recId, ECDSASignature sig, Sha256Hash message, boolean compressed) {
Preconditions.checkArgument(recId >= 0, "recId must be positive");
Preconditions.checkArgument(sig.r.signum() >= 0, "r must be positive");
Preconditions.checkArgument(sig.s.signum() >= 0, "s must be positive");
Preconditions.checkNotNull(message);
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = CURVE.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = message.toBigInteger();
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint.Fp q = (ECPoint.Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
if (compressed) {
// We have to manually recompress the point as the compressed-ness gets lost when multiply() is used.
q = new ECPoint.Fp(curve, q.getX(), q.getY(), true);
}
return new ECKey((byte[])null, q.getEncoded());
}
示例11: recoverFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param message Hash of the data that was signed.
* @param compressed Whether or not the original pubkey was compressed.
* @return An ECKey containing only the public part, or null if recovery wasn't possible.
*/
@Nullable
public static ECKey recoverFromSignature(int recId, ECDSASignature sig, Sha256Hash message, boolean compressed) {
Preconditions.checkArgument(recId >= 0, "recId must be positive");
Preconditions.checkArgument(sig.r.compareTo(BigInteger.ZERO) >= 0, "r must be positive");
Preconditions.checkArgument(sig.s.compareTo(BigInteger.ZERO) >= 0, "s must be positive");
Preconditions.checkNotNull(message);
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = CURVE.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = message.toBigInteger();
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint.Fp q = (ECPoint.Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
if (compressed) {
// We have to manually recompress the point as the compressed-ness gets lost when multiply() is used.
q = new ECPoint.Fp(curve, q.getX(), q.getY(), true);
}
return new ECKey((byte[])null, q.getEncoded());
}
示例12: recoverFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param messageHash Hash of the data that was signed.
* @param compressed Whether or not the original pubkey was compressed.
* @return An ECKey containing only the public part, or null if recovery wasn't possible.
*/
@Nullable
public static ECKey recoverFromSignature(int recId, ECDSASignature sig, byte[] messageHash, boolean compressed) {
check(recId >= 0, "recId must be positive");
check(sig.r.signum() >= 0, "r must be positive");
check(sig.s.signum() >= 0, "s must be positive");
check(messageHash != null, "messageHash must not be null");
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = CURVE.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = new BigInteger(1, messageHash);
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint.Fp q = (ECPoint.Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
return ECKey.fromPublicOnly(q.getEncoded(compressed));
}
示例13: recoverFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param message Hash of the data that was signed.
* @param compressed Whether or not the original pubkey was compressed.
* @return An ECKey containing only the public part, or null if recovery wasn't possible.
*/
@Nullable
public static ECKey recoverFromSignature(int recId, ECDSASignature sig, Sha256Hash message, boolean compressed) {
Preconditions.checkArgument(recId >= 0, "recId must be positive");
Preconditions.checkArgument(sig.r.signum() >= 0, "r must be positive");
Preconditions.checkArgument(sig.s.signum() >= 0, "s must be positive");
Preconditions.checkNotNull(message);
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = CURVE.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = message.toBigInteger();
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint.Fp q = (ECPoint.Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
return new ECKey((byte[])null, q.getEncoded(compressed));
}
示例14: recoverFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param message Hash of the data that was signed.
* @param compressed Whether or not the original pubkey was compressed.
* @return An ECKey containing only the public part, or null if recovery wasn't possible.
*/
public static ECKey recoverFromSignature(int recId, ECDSASignature sig, Sha256Hash message, boolean compressed) {
Preconditions.checkArgument(recId >= 0, "recId must be positive");
Preconditions.checkArgument(sig.r.compareTo(BigInteger.ZERO) >= 0, "r must be positive");
Preconditions.checkArgument(sig.s.compareTo(BigInteger.ZERO) >= 0, "s must be positive");
Preconditions.checkNotNull(message);
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = CURVE.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = message.toBigInteger();
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint p1 = CURVE.getG().multiply(eInvrInv);
ECPoint p2 = R.multiply(srInv);
ECPoint.Fp q = (ECPoint.Fp) p2.add(p1);
if (compressed) {
// We have to manually recompress the point as the compressed-ness gets lost when multiply() is used.
q = new ECPoint.Fp(curve, q.getX(), q.getY(), true);
}
return new ECKey((byte[])null, q.getEncoded());
}
示例15: recoverFromSignature
import org.spongycastle.math.ec.ECCurve; //导入方法依赖的package包/类
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
* <p/>
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
* <p/>
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
* <p/>
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param message Hash of the data that was signed.
* @param compressed Whether or not the original pubkey was compressed.
* @return An ECKey containing only the public part, or null if recovery wasn't possible.
*/
public static ECKey recoverFromSignature(int recId, ECDSASignature sig, Sha256Hash message, boolean compressed) {
Preconditions.checkArgument(recId >= 0, "recId must be positive");
Preconditions.checkArgument(sig.r.compareTo(BigInteger.ZERO) >= 0, "r must be positive");
Preconditions.checkArgument(sig.s.compareTo(BigInteger.ZERO) >= 0, "s must be positive");
Preconditions.checkNotNull(message);
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
BigInteger n = ecParams.getN(); // Curve order.
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) ecParams.getCurve();
BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime.
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = message.toBigInteger();
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint p1 = ecParams.getG().multiply(eInvrInv);
ECPoint p2 = R.multiply(srInv);
ECPoint.Fp q = (ECPoint.Fp) p2.add(p1);
if (compressed) {
// We have to manually recompress the point as the compressed-ness gets lost when multiply() is used.
q = new ECPoint.Fp(curve, q.getX(), q.getY(), true);
}
return new ECKey((byte[]) null, q.getEncoded());
}