本文整理汇总了Java中org.rosuda.JRI.Rengine.eval方法的典型用法代码示例。如果您正苦于以下问题:Java Rengine.eval方法的具体用法?Java Rengine.eval怎么用?Java Rengine.eval使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.rosuda.JRI.Rengine
的用法示例。
在下文中一共展示了Rengine.eval方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: createBalloonPlotBugsFeatures
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
/**
* Draw a balloon plot and generate a jpg file of it.
* The plot concerns KO build and features.
*
* @param re Rengine to execute r commands and get feedback.
*/
public static void createBalloonPlotBugsFeatures(Rengine re){
// Install packge (only necessary once)
//re.eval("install.packages(\"ggplot2\")");
// Retrieve data and extract ApplicationType and DatabaseColumn, grouped and counted
readCSV(re, "jhipster.csv","data");
re.eval("temp <- data.frame(table(data$applicationType, data$Build))");
//re.eval("print(names(temp))");
re.eval("names(temp)[names(temp)==\"Freq\"] <- \"Proportion\"");
//re.eval("print(temp)");
// Draw the balloonPlot
re.eval("library(ggplot2)");
re.eval("p <- ggplot(temp, aes(x=Var1, y=Var2, size=Proportion)) + "
+ "geom_point(shape=21, colour=\"black\", fill=\"cornsilk\") +"
+ "xlab(\"Build\") + "
+ "ylab(\"Features\")");
re.eval("ggsave(\"bugsFeatures.jpg\")");
}
示例2: InicializeRNet
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
private void InicializeRNet() {
System.out.println("Creating Rengine (with arguments)");
// If not started with --vanilla, funny things may happen in this R
// shell.
String[] Rargs = { "--vanilla" };
engine = new Rengine(Rargs, false, null);
// System.out.println("Rengine created, waiting for R");
// the engine creates R is a new thread, so we should wait until it's
// ready
if (!engine.waitForR()) {
System.out.println("Cannot load R");
return;
}
String rfilepath = "C:\\\\Program Files\\\\R\\\\R-3.3.1\\\\library\\\\Functions.R";
engine.eval("source(\"" + rfilepath + "\")");
}
示例3: getOneDisabled
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
private static void getOneDisabled(Rengine re, String featureType, String featureName, String collectionName){
// If optional features
if(featureType.equals("Docker") || featureType.equals("hibernateCache")
|| featureType.equals("clusteredHttpSession") || featureType.equals("websocket")
|| featureType.equals("searchEngine") || featureType.equals("enableSocialSignIn")
|| featureType.equals("useSass") || featureType.equals("enableTranslation"))
{
re.eval(String.format("%sOneDisabled <- data[grep(\"no|false|ND\", data$%s),]", collectionName, featureType));
} else{
re.eval(String.format("%sOneDisabled <- data[-grep(\"%s\", data$%s),]", collectionName, featureName, featureType));
}
re.eval(String.format("max%sEnabledFeatures <- as.numeric(as.character((data.frame(table(%sOneDisabled$nbFeatures))[nrow(data.frame(table(%sOneDisabled$nbFeatures))),1])))", collectionName, collectionName, collectionName));
re.eval(String.format("%sOneDisabled <- %sOneDisabled[grep(max%sEnabledFeatures, %sOneDisabled$nbFeatures),]", collectionName, collectionName, collectionName, collectionName));
re.eval(String.format("firstOne%sOneDisabled <- %sOneDisabled[1,]", collectionName, collectionName));
for(int i=0; i<NUMBER_OF_RANDOMS; i++)
re.eval(String.format("random%sOneDisabled%d <- %sOneDisabled[sample(nrow(%sOneDisabled),1),]", collectionName, i, collectionName, collectionName));
}
示例4: createBoxplotTimeCompile
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createBoxplotTimeCompile(Rengine re) {
// Read CSV.
readCSV(re, "jhipster.csv","data");
// Create Boxplot + Save jpg
re.eval("jpeg('boxplotTimeToCompile.jpg')");
// drop doublon Docker
re.eval("data <- data[- grep(\"true\", data$Docker),]");
// drop KO timeToCompile
re.eval("data <- data[- grep(\"KO\", data$TimeToCompile),]");
//cast numerical
re.eval("data$TimeToCompile <- as.numeric(as.character(data$TimeToCompile))");
//System.out.println(re.eval("boxplot(data$TimeToGenerate.secs.)"));
re.eval("boxplot(data$TimeToCompile~data$applicationType, ylab='Time To Compile(secs)'"
//+ ","
//+ "main='Boxplot Distribution:Time Compilation of different JHipster apps'"
+ ")");
re.eval("dev.off()");
}
示例5: createBoxplotTimeBuildWithoutDockerApp
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createBoxplotTimeBuildWithoutDockerApp(Rengine re) {
// Read CSV.
readCSV(re, "jhipster.csv","data");
// Create Boxplot + Save jpg
re.eval("jpeg('boxplotTimeToBuildWithoutDocker.jpg')");
// drop Docker
re.eval("data <- data[- grep(\"true\", data$Docker),]");
// drop ND timeToBuild
//re.eval("data <- data[- grep(\"ND\", data$TimeToBuild),]");
// only OK BUILD !!
re.eval("data <- data[- grep(\"KO\", data$Build),]");
//cast numerical
re.eval("data$TimeToBuild <- as.numeric(as.character(data$TimeToBuild))");
re.eval("boxplot(data$TimeToBuild~data$applicationType, ylab='Time To Build(secs)'"
//+ ",main='Boxplot Distribution:Time to build without Docker'
+")");
re.eval("dev.off()");
}
示例6: createBoxplotTimeBuildWithDockerApp
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createBoxplotTimeBuildWithDockerApp(Rengine re) {
// Read CSV.
readCSV(re, "jhipster.csv","data");
// Create Boxplot + Save jpg
re.eval("jpeg('boxplotTimeToBuildWithDocker.jpg')");
// drop NotDocker
re.eval("data <- data[- grep(\"false\", data$Docker),]");
// drop ND Time To build
//re.eval("data <- data[- grep(\"ND\", data$TimeToBuild),]");
// drop KO Time To build Docker Package
//re.eval("data <- data[- grep(\"ND\", data$TimeToBuildDockerPackage),]");
// only OK BUILD !!
re.eval("data <- data[- grep(\"KO\", data$Build),]");
//cast numerical TimeToBuild and TimeToBuildDockerPackage
re.eval("data$TimeToBuild <- as.numeric(as.character(data$TimeToBuild))");
re.eval("data$TimeToBuildDockerPackage <- as.numeric(as.character(data$TimeToBuildDockerPackage))");
//Add TimeToBuildDockerPackage to TimeToBuild
re.eval("data$TimeToBuildTotal <- data$TimeToBuildDockerPackage + data$TimeToBuild");
re.eval("boxplot(data$TimeToBuildTotal~data$applicationType, ylab='Time To Build(secs)'"
//+ ",main='Boxplot Distribution:Time to build with Docker'"
+ ")");
re.eval("dev.off()");
}
示例7: createBoxplotCucumeberDatabase
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createBoxplotCucumeberDatabase(Rengine re) {
// Read CSV.
readCSV(re, "jhipster.csv","data");
readCSV(re, "cucumber.csv","data2");
re.eval("mergeData = merge(data, data2)");
// Create Boxplot + Save jpg
re.eval("jpeg('boxplotCucumberDB.jpg')");
re.eval("mergeData <- mergeData[- grep(\"ND\", mergeData$getCurrentUserLogin),]");
//cast numerical getCurrentUserLogin
re.eval("mergeData$getCurrentUserLogin <- as.numeric(as.character(mergeData$getCurrentUserLogin))");
re.eval("boxplot(mergeData$getCurrentUserLogin~mergeData$prodDatabaseType, ylab='seconds'"
//+ ",main='Boxplot Distribution:Cucumber Database'"
+ ")");
re.eval("dev.off()");
}
示例8: createBoxplotTimeBuildWithDockerBuildTool
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createBoxplotTimeBuildWithDockerBuildTool(Rengine re) {
// Read CSV.
readCSV(re, "jhipster.csv","data");
// Create Boxplot + Save jpg
re.eval("jpeg('boxplotTimeToBuildWithDockerBuildTool.jpg')");
// drop NotDocker
re.eval("data <- data[- grep(\"false\", data$Docker),]");
// drop ND timeToBuild
//re.eval("data <- data[- grep(\"ND\", data$TimeToBuild),]");
// only OK BUILD !!
re.eval("data <- data[- grep(\"KO\", data$Build),]");
//cast numerical TimeToBuild and TimeToBuildDockerPackage
re.eval("data$TimeToBuild <- as.numeric(as.character(data$TimeToBuild))");
re.eval("data$TimeToBuildDockerPackage <- as.numeric(as.character(data$TimeToBuildDockerPackage))");
//Add TimeToBuildDockerPackage to TimeToBuild
re.eval("data$TimeToBuildTotal <- data$TimeToBuildDockerPackage + data$TimeToBuild");
re.eval("boxplot(data$TimeToBuildTotal~data$buildTool, ylab='Time To Build(secs)'"
//+ ",main='Boxplot Distribution:Time to build with Docker/buildTool'"
+ ")");
re.eval("dev.off()");
}
示例9: createBoxplotCoverage
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createBoxplotCoverage(Rengine re) {
// Read CSV.
readCSV(re, "jhipster.csv","dataJava");
readCSV(re, "jhipster.csv","dataJS");
re.eval("dataJava <- dataJava[- grep(\"ND\", dataJava$CoverageInstructions),]");
//re.eval("dataJava <- dataJava[- grep(\"X\", dataJava$CoverageInstructions),]");
re.eval("dataJS <- dataJS[- grep(\"ND\", dataJS$JSStatementsCoverage),]");
//re.eval("dataJS <- dataJS[- grep(\"X\", dataJS$JSStatementsCoverage),]");
//remove % char
re.eval("dataJS$JSStatementsCoverage <- as.data.frame(sapply(dataJS$JSStatementsCoverage,gsub,pattern=\"%\",replacement=\"\"))");
re.eval("dataJS$JSStatementsCoverage <- unlist(dataJS$JSStatementsCoverage)");
re.eval("dataJS$JSBranchesCoverage <- as.data.frame(sapply(dataJS$JSBranchesCoverage,gsub,pattern=\"%\",replacement=\"\"))");
re.eval("dataJS$JSBranchesCoverage <- unlist(dataJS$JSBranchesCoverage)");
//set numerical
re.eval("dataJava$CoverageInstructions <- as.numeric(as.character(dataJava$CoverageInstructions))");
re.eval("dataJava$CoverageBranches <- as.numeric(as.character(dataJava$CoverageBranches))");
re.eval("dataJS$JSStatementsCoverage <- as.numeric(as.character(dataJS$JSStatementsCoverage))");
re.eval("dataJS$JSBranchesCoverage <- as.numeric(as.character(dataJS$JSBranchesCoverage))");
re.eval("jpeg('boxplotJAVACoverage.jpg')");
//System.out.println(re.eval("boxplot(data$CoverageInstructions...)"));
re.eval("lmts <- range(dataJava$CoverageInstructions,dataJava$CoverageBranches,dataJS$JSStatementsCoverage,dataJS$JSBranchesCoverage)");
re.eval("par(mfrow = c(2, 2))");
re.eval("boxplot(dataJava$CoverageInstructions,ylim=lmts, xlab='CoverageInstruction(%)')");
re.eval("boxplot(dataJava$CoverageBranches,ylim=lmts, xlab='CoverageBranches(%)')");
re.eval("boxplot(dataJS$JSStatementsCoverage,ylim=lmts, xlab='CoverageJSStatements(%)')");
re.eval("boxplot(dataJS$JSBranchesCoverage,ylim=lmts, xlab='CoverageJSBranches(%)')");
//re.eval("title(\"Boxplot Distribution of JAVA Coverage JHipster Tests\", outer=TRUE)");
//re.eval("(annotate(\"Boxplot Distribution of JAVA Coverage JHipster Tests\", side = 3, line = -21, outer = TRUE)");
re.eval("dev.off()");
}
示例10: createBoxplotImageDockerApplications
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createBoxplotImageDockerApplications(Rengine re) {
// Read CSV.
readCSV(re, "jhipster.csv","data");
// Create Boxplot + Save jpg
re.eval("jpeg('boxplotImageDockerApps.jpg')");
// drop NotDocker
re.eval("data <- data[- grep(\"false\", data$Docker),]");
// drop ND imageDocker
re.eval("data <- data[- grep(\"ND\", data$ImageDocker),]");
//remove MB
re.eval("data$ImageDocker <- as.data.frame(sapply(data$ImageDocker,gsub,pattern=\" MB\",replacement=\"\"))");
//rempove quotes
re.eval("data$ImageDocker <- as.data.frame(sapply(data$ImageDocker, function(x) gsub(\"\\\"\", \"\", x)))");
re.eval("data$ImageDocker <- unlist(data$ImageDocker)");
//cast numerical TimeToBuild and TimeToBuildDockerPackage
re.eval("data$ImageDocker <- as.numeric(as.character(data$ImageDocker))");
re.eval("boxplot(data$ImageDocker~data$applicationType, ylab='ImageDocker(MB)'"
//+ ",main='Boxplot Distribution:Image Docker'"
+ ")");
re.eval("dev.off()");
}
示例11: createPieChartBuildResultByBuildTool
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createPieChartBuildResultByBuildTool(Rengine re){
readCSV(re, "jhipster.csv","data");
// drop NotDocker
re.eval("data <- data[- grep(\"false\", data$Docker),]");
re.eval("dataBuildToolBuildResult <- data.frame(table(data$buildTool, data$Build))");
re.eval("buildOK <- dataBuildToolBuildResult[- grep(\"KO\", dataBuildToolBuildResult$Var2),]");
re.eval("buildKO <- dataBuildToolBuildResult[- grep(\"OK\", dataBuildToolBuildResult$Var2),]");
re.eval("buildOK <- as.vector(buildOK$Freq)");
re.eval("buildKO <- as.vector(buildKO$Freq)");
re.eval("labels <- c(\"Gradle\", \"Maven\")");
re.eval("jpeg('buildOKPie.jpeg')");
re.eval("pie(buildOK, labels = labels, main=\"Proportion of build success by build tool\")");
re.eval("dev.off()");
re.eval("jpeg('buildKOPie.jpeg')");
re.eval("pie(buildKO, labels = labels"
//+ ", main=\"Proportion of build failed by build tool\""
+ ")");
re.eval("dev.off()");
}
示例12: createBalloonPlot
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
/**
* Draw a balloon plot and generate a png file of it.
* The plot concerns ApplicationType and ProductionDatabase.
*
* @param re Rengine to execute r commands and get feedback.
*/
public static void createBalloonPlot(Rengine re){
// Install packge (only necessary once)
//re.eval("install.packages(\"ggplot2\")");
// Retrieve data and extract ApplicationType and DatabaseColumn, grouped and counted
readCSV(re, "jhipster.csv","data");
re.eval("temp <- data.frame(table(data$applicationType, data$prodDatabaseType))");
//re.eval("print(names(temp))");
re.eval("names(temp)[names(temp)==\"Freq\"] <- \"Proportion\"");
//re.eval("print(temp)");
// Draw the balloonPlot
re.eval("library(ggplot2)");
re.eval("p <- ggplot(temp, aes(x=Var1, y=Var2, size=Proportion)) + "
+ "geom_point(shape=21, colour=\"black\", fill=\"cornsilk\") +"
+ "xlab(\"Application Type\") + "
+ "ylab(\"Database\")");
re.eval("ggsave(\"ggplot.jpg\")");
}
示例13: createBoxplotTimeGeneration
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void createBoxplotTimeGeneration(Rengine re) {
// Read CSV.
readCSV(re, "jhipster.csv","data");
// Create Boxplot + Save jpg
re.eval("jpeg('boxplotTimeToGenerate.jpg')");
// drop doublon Docker
re.eval("data <- data[- grep(\"true\", data$Docker),]");
re.eval("boxplot(data$TimeToGenerate~data$applicationType, ylab='Time To Generate(secs)', xlab='Applications Type')");
//+ "main='Boxplot Distribution:Time Generation of different JHipster apps')");
re.eval("dev.off()");
}
示例14: run
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public void run() {
REngineManager rengineManager = REngineManager.getInstance();
Rengine re = rengineManager.getREngine();
try {
REXP RarResiduals;
REXP RarPreds;
re.assign("valseries", tSeries);
re.eval("valseries.ar=ar.mle(valseries, aic=FALSE, order.max="+ arOrder + ")");
RarResiduals=re.eval("valseries.ar$resid["+initialOffset + ":length(valseries)]");
RarResiduals=re.eval("valseries.ar$resid["+initialOffset + ":length(valseries)]");
this.arResiduals = RarResiduals.asDoubleArray();
re.eval("valpred=predict(valseries.ar,n.ahead="+predStep+")");
RarPreds=re.eval("valpred$pred");
this.arPreds = RarPreds.asDoubleArray();
} catch (Exception e) {
System.out.println("EX:"+e);
e.printStackTrace();
rengineManager.endEngine();
}
}
示例15: Start
import org.rosuda.JRI.Rengine; //导入方法依赖的package包/类
public static void Start(Rengine re)
{
System.out.print("ImportingObjs");
String RCodeString ="";
//R string vector
RCodeString = "mycharvector<-c(\"hello\",\"bye\",\"OSIsoft\")";
System.out.println("\nR Code: " + RCodeString);
REXP Rstringvector = re.eval(RCodeString);
String[] myStringArray = Rstringvector.asStringArray();
System.out.println("\nmyStringArray: ");
int i = 1;
for(String myString : myStringArray)
{
System.out.println(i + " value: " + myString);
i++;
}
//R int vector
RCodeString = "myintvector<-1:10";
System.out.println("\nR Code: " + RCodeString);
REXP Rintvector = re.eval(RCodeString);
int[] myIntegerArray = Rintvector.asIntArray();
System.out.println("\nInteger Vector: ");
i = 1;
for(int myInteger : myIntegerArray)
{
System.out.println(i + " value=" + myInteger);
i++;
}
//R real vector
RCodeString = "myrealvector<-rnorm(5, 0, 1)";
System.out.println("\nR Code: " + RCodeString);
REXP Rrealvector= re.eval(RCodeString);
double[] myDoubleArray = Rrealvector.asDoubleArray();
System.out.println("\nNumeric Vector: ");
i = 1;
for(double myNumeric : myDoubleArray)
{
System.out.println(i + " value=" + myNumeric);
i++;
}
//R Boolean
RCodeString = "mybool<-c(FALSE)";
System.out.println("\nR Code: " + RCodeString);
RBool myBool = re.eval(RCodeString ).asBool();
System.out.println(i + " value=" + myBool.toString());
}