本文整理汇总了Java中org.pentaho.di.core.row.ValueDataUtil.plus方法的典型用法代码示例。如果您正苦于以下问题:Java ValueDataUtil.plus方法的具体用法?Java ValueDataUtil.plus怎么用?Java ValueDataUtil.plus使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.pentaho.di.core.row.ValueDataUtil
的用法示例。
在下文中一共展示了ValueDataUtil.plus方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: addCumulativeSums
import org.pentaho.di.core.row.ValueDataUtil; //导入方法依赖的package包/类
private void addCumulativeSums(Object[] row) throws KettleValueException {
// We need to adjust this row with cumulative averages?
//
for (int i=0;i<data.cumulativeSumSourceIndexes.size();i++)
{
int sourceIndex = data.cumulativeSumSourceIndexes.get(i);
Object previousTarget = data.previousSums[i];
Object sourceValue = row[sourceIndex];
int targetIndex = data.cumulativeSumTargetIndexes.get(i);
ValueMetaInterface sourceMeta = data.inputRowMeta.getValueMeta(sourceIndex);
ValueMetaInterface targetMeta = data.outputRowMeta.getValueMeta(targetIndex);
// If the first values where null, or this is the first time around, just take the source value...
//
if (targetMeta.isNull(previousTarget))
{
row[targetIndex]=sourceMeta.convertToNormalStorageType(sourceValue);
}
else
{
// If the source value is null, just take the previous target value
//
if (sourceMeta.isNull(sourceValue))
{
row[targetIndex] = previousTarget;
}
else
{
row[targetIndex] = ValueDataUtil.plus(targetMeta, data.previousSums[i], sourceMeta, row[sourceIndex]);
}
}
data.previousSums[i] = row[targetIndex];
}
}
示例2: addCumulativeSums
import org.pentaho.di.core.row.ValueDataUtil; //导入方法依赖的package包/类
private void addCumulativeSums( Object[] row ) throws KettleValueException {
// We need to adjust this row with cumulative averages?
//
for ( int i = 0; i < data.cumulativeSumSourceIndexes.size(); i++ ) {
int sourceIndex = data.cumulativeSumSourceIndexes.get( i );
Object previousTarget = data.previousSums[ i ];
Object sourceValue = row[ sourceIndex ];
int targetIndex = data.cumulativeSumTargetIndexes.get( i );
ValueMetaInterface sourceMeta = data.inputRowMeta.getValueMeta( sourceIndex );
ValueMetaInterface targetMeta = data.outputRowMeta.getValueMeta( targetIndex );
// If the first values where null, or this is the first time around, just take the source value...
//
if ( targetMeta.isNull( previousTarget ) ) {
row[ targetIndex ] = sourceMeta.convertToNormalStorageType( sourceValue );
} else {
// If the source value is null, just take the previous target value
//
if ( sourceMeta.isNull( sourceValue ) ) {
row[ targetIndex ] = previousTarget;
} else {
row[ targetIndex ] = ValueDataUtil.plus( targetMeta, data.previousSums[ i ], sourceMeta, row[ sourceIndex ] );
}
}
data.previousSums[ i ] = row[ targetIndex ];
}
}
示例3: addCumulativeAverages
import org.pentaho.di.core.row.ValueDataUtil; //导入方法依赖的package包/类
private void addCumulativeAverages(Object[] row) throws KettleValueException {
// We need to adjust this row with cumulative sums
//
for (int i=0;i<data.cumulativeAvgSourceIndexes.size();i++)
{
int sourceIndex = data.cumulativeAvgSourceIndexes.get(i);
Object previousTarget = data.previousAvgSum[i];
Object sourceValue = row[sourceIndex];
int targetIndex = data.cumulativeAvgTargetIndexes.get(i);
ValueMetaInterface sourceMeta = data.inputRowMeta.getValueMeta(sourceIndex);
ValueMetaInterface targetMeta = data.outputRowMeta.getValueMeta(targetIndex);
// If the first values where null, or this is the first time around, just take the source value...
//
Object sum = null;
if (targetMeta.isNull(previousTarget))
{
sum=sourceMeta.convertToNormalStorageType(sourceValue);
}
else
{
// If the source value is null, just take the previous target value
//
if (sourceMeta.isNull(sourceValue))
{
sum = previousTarget;
}
else
{
if (sourceMeta.isInteger())
{
sum = ValueDataUtil.plus(data.valueMetaInteger, data.previousAvgSum[i], sourceMeta, row[sourceIndex]);
}
else
{
sum = ValueDataUtil.plus(targetMeta, data.previousAvgSum[i], sourceMeta, row[sourceIndex]);
}
}
}
data.previousAvgSum[i] = sum;
if (!sourceMeta.isNull(sourceValue)) data.previousAvgCount[i]++;
if (sourceMeta.isInteger()) {
// Change to number as the exception
//
if (sum==null)
{
row[targetIndex] = null;
}
else
{
row[targetIndex] = new Double( ((Long)sum).doubleValue() / data.previousAvgCount[i] );
}
}
else
{
row[targetIndex] = ValueDataUtil.divide(targetMeta, sum, data.valueMetaInteger, data.previousAvgCount[i]);
}
}
}
示例4: addCumulativeAverages
import org.pentaho.di.core.row.ValueDataUtil; //导入方法依赖的package包/类
private void addCumulativeAverages( Object[] row ) throws KettleValueException {
// We need to adjust this row with cumulative sums
//
for ( int i = 0; i < data.cumulativeAvgSourceIndexes.size(); i++ ) {
int sourceIndex = data.cumulativeAvgSourceIndexes.get( i );
Object previousTarget = data.previousAvgSum[ i ];
Object sourceValue = row[ sourceIndex ];
int targetIndex = data.cumulativeAvgTargetIndexes.get( i );
ValueMetaInterface sourceMeta = data.inputRowMeta.getValueMeta( sourceIndex );
ValueMetaInterface targetMeta = data.outputRowMeta.getValueMeta( targetIndex );
// If the first values where null, or this is the first time around, just take the source value...
//
Object sum = null;
if ( targetMeta.isNull( previousTarget ) ) {
sum = sourceMeta.convertToNormalStorageType( sourceValue );
} else {
// If the source value is null, just take the previous target value
//
if ( sourceMeta.isNull( sourceValue ) ) {
sum = previousTarget;
} else {
if ( sourceMeta.isInteger() ) {
sum = ValueDataUtil.plus( data.valueMetaInteger, data.previousAvgSum[ i ], sourceMeta, row[ sourceIndex ] );
} else {
sum = ValueDataUtil.plus( targetMeta, data.previousAvgSum[ i ], sourceMeta, row[ sourceIndex ] );
}
}
}
data.previousAvgSum[ i ] = sum;
if ( !sourceMeta.isNull( sourceValue ) ) {
data.previousAvgCount[ i ]++;
}
if ( sourceMeta.isInteger() ) {
// Change to number as the exception
//
if ( sum == null ) {
row[ targetIndex ] = null;
} else {
row[ targetIndex ] = new Double( ( (Long) sum ).doubleValue() / data.previousAvgCount[ i ] );
}
} else {
row[ targetIndex ] = ValueDataUtil.divide( targetMeta, sum, data.valueMetaInteger, data.previousAvgCount[ i ] );
}
}
}