当前位置: 首页>>代码示例>>Java>>正文


Java Transforms.abs方法代码示例

本文整理汇总了Java中org.nd4j.linalg.ops.transforms.Transforms.abs方法的典型用法代码示例。如果您正苦于以下问题:Java Transforms.abs方法的具体用法?Java Transforms.abs怎么用?Java Transforms.abs使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.nd4j.linalg.ops.transforms.Transforms的用法示例。


在下文中一共展示了Transforms.abs方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: applyUpdater

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
/**
 * Calculate the update based on the given gradient
 *
 * @param gradient  the gradient to get the update for
 * @param iteration
 * @return the gradient
 */
@Override
public void applyUpdater(INDArray gradient, int iteration, int epoch) {
    if (m == null || u == null)
        throw new IllegalStateException("Updater has not been initialized with view state");

    //m = B_1 * m + (1-B_1)*grad
    m.muli(config.getBeta1()).addi(gradient.mul(1 - config.getBeta1()));

    //u = max(B_2 * u, |grad|)
    u.muli(config.getBeta2());
    Transforms.abs(gradient, false); //In-place should be OK here, original gradient values aren't used again later
    Nd4j.getExecutioner().exec(new OldMax(u, gradient, u, u.length()));

    double beta1t = FastMath.pow(config.getBeta1(), iteration + 1);

    double learningRate = config.getLearningRate(iteration, epoch);
    double alphat = learningRate / (1.0 - beta1t);
    if (Double.isNaN(alphat) || Double.isInfinite(alphat) || alphat == 0.0) {
        alphat = config.getEpsilon();
    }

    u.addi(1e-32); // prevent NaNs in params
    gradient.assign(m).muli(alphat).divi(u);
}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:32,代码来源:AdaMaxUpdater.java

示例2: testUnderOverflow

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Test
public void testUnderOverflow() {
    // This dataset will be basically constant with a small std deviation
    // And the constant is large. Checking if algorithm can handle
    double tolerancePerc = 1; //Within 1 %
    double toleranceAbs = 0.0005;
    int nSamples = 1000;
    int bSize = 10;
    int x = -1000000, y = 1000000;
    double z = 1000000;

    INDArray featureX = Nd4j.rand(nSamples, 1).mul(1).add(x);
    INDArray featureY = Nd4j.rand(nSamples, 1).mul(2).add(y);
    INDArray featureZ = Nd4j.rand(nSamples, 1).mul(3).add(z);
    INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ);
    INDArray labelSet = Nd4j.zeros(nSamples, 1);
    DataSet sampleDataSet = new DataSet(featureSet, labelSet);
    DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize);

    INDArray theoreticalMean = Nd4j.create(new double[] {x, y, z});

    NormalizerStandardize myNormalizer = new NormalizerStandardize();
    myNormalizer.fit(sampleIter);

    INDArray meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
    INDArray meanDeltaPerc = meanDelta.mul(100).div(theoreticalMean);
    assertTrue(meanDeltaPerc.max(1).getDouble(0, 0) < tolerancePerc);

    //this just has to not barf
    //myNormalizer.transform(sampleIter);
    myNormalizer.transform(sampleDataSet);
}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:33,代码来源:NormalizerStandardizeTest.java

示例3: testIMinIAMin

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Test
public void testIMinIAMin() {
    INDArray arr = Nd4j.create(new double[] {-0.24, -0.26, -0.07, -0.01});
    INDArray abs = Transforms.abs(arr);
    IAMin iaMin = new IAMin(abs);
    IMin iMin = new IMin(arr.dup());
    double imin = Nd4j.getExecutioner().execAndReturn(iMin).getFinalResult();
    double iamin = Nd4j.getExecutioner().execAndReturn(iaMin).getFinalResult();
    System.out.println("IMin: " + imin);
    System.out.println("IAMin: " + iamin);
    assertEquals(3, iamin, 1e-12);
    assertEquals(1, imin, 1e-12);
}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:14,代码来源:Nd4jTestsC.java

示例4: map

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Override
public NDArrayWritable map(Writable w) {
    NDArrayWritable n = (NDArrayWritable) w;
    INDArray i = n.get();
    if (i == null) {
        return n;
    }

    NDArrayWritable o;
    switch (mathFunction) {
        case ABS:
            o = new NDArrayWritable(Transforms.abs(i, DUP));
            break;
        case ACOS:
            o = new NDArrayWritable(Transforms.acos(i, DUP));
            break;
        case ASIN:
            o = new NDArrayWritable(Transforms.asin(i, DUP));
            break;
        case ATAN:
            o = new NDArrayWritable(Transforms.atan(i, DUP));
            break;
        case CEIL:
            o = new NDArrayWritable(Transforms.ceil(i, DUP));
            break;
        case COS:
            o = new NDArrayWritable(Transforms.cos(i, DUP));
            break;
        case COSH:
            //No cosh operation in ND4J
            throw new UnsupportedOperationException("sinh operation not yet supported for NDArray columns");
        case EXP:
            o = new NDArrayWritable(Transforms.exp(i, DUP));
            break;
        case FLOOR:
            o = new NDArrayWritable(Transforms.floor(i, DUP));
            break;
        case LOG:
            o = new NDArrayWritable(Transforms.log(i, DUP));
            break;
        case LOG10:
            o = new NDArrayWritable(Transforms.log(i, 10.0, DUP));
            break;
        case SIGNUM:
            o = new NDArrayWritable(Transforms.sign(i, DUP));
            break;
        case SIN:
            o = new NDArrayWritable(Transforms.sin(i, DUP));
            break;
        case SINH:
            //No sinh op in ND4J
            throw new UnsupportedOperationException("sinh operation not yet supported for NDArray columns");
        case SQRT:
            o = new NDArrayWritable(Transforms.sqrt(i, DUP));
            break;
        case TAN:
            //No tan op in ND4J yet - but tan(x) = sin(x)/cos(x)
            INDArray sinx = Transforms.sin(i, true);
            INDArray cosx = Transforms.cos(i, true);
            o = new NDArrayWritable(sinx.divi(cosx));
            break;
        case TANH:
            o = new NDArrayWritable(Transforms.tanh(i, DUP));
            break;
        default:
            throw new RuntimeException("Unknown function: " + mathFunction);
    }

    //To avoid threading issues...
    Nd4j.getExecutioner().commit();

    return o;

}
 
开发者ID:deeplearning4j,项目名称:DataVec,代码行数:75,代码来源:NDArrayMathFunctionTransform.java

示例5: runOp

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Override
public void runOp() {
   Transforms.abs(arr);
  //  ops.execTransform(0,arr.data().asNioFloat(),arr.shapeInfo(),arr.data().asNioFloat(),arr.shapeInfo(),null,arr.length(),indexes,indexes);
    //ops.execTransform(0,arr.data().asNioFloat(),1,arr.data().asNioFloat(),1,null,arr.length());
}
 
开发者ID:deeplearning4j,项目名称:nd4j-benchmark,代码行数:7,代码来源:ElementWiseOpRunner.java

示例6: testBruteForce

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Test
public void testBruteForce() {
    /* This test creates a dataset where feature values are multiples of consecutive natural numbers
       The obtained values are compared to the theoretical mean and std dev
     */
    double tolerancePerc = 0.01;
    int nSamples = 5120;
    int x = 1, y = 2, z = 3;

    INDArray featureX = Nd4j.linspace(1, nSamples, nSamples).reshape(nSamples, 1).mul(x);
    INDArray featureY = featureX.mul(y);
    INDArray featureZ = featureX.mul(z);
    INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ);
    INDArray labelSet = featureSet.dup().getColumns(new int[] {0});
    DataSet sampleDataSet = new DataSet(featureSet, labelSet);

    double meanNaturalNums = (nSamples + 1) / 2.0;
    INDArray theoreticalMean =
                    Nd4j.create(new double[] {meanNaturalNums * x, meanNaturalNums * y, meanNaturalNums * z});
    INDArray theoreticallabelMean = theoreticalMean.dup().getColumns(new int[] {0});
    double stdNaturalNums = Math.sqrt((nSamples * nSamples - 1) / 12.0);
    INDArray theoreticalStd =
                    Nd4j.create(new double[] {stdNaturalNums * x, stdNaturalNums * y, stdNaturalNums * z});
    INDArray theoreticallabelStd = theoreticalStd.dup().getColumns(new int[] {0});

    NormalizerStandardize myNormalizer = new NormalizerStandardize();
    myNormalizer.fitLabel(true);
    myNormalizer.fit(sampleDataSet);

    INDArray meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
    INDArray labelDelta = Transforms.abs(theoreticallabelMean.sub(myNormalizer.getLabelMean()));
    INDArray meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100);
    INDArray labelDeltaPerc = labelDelta.div(theoreticallabelMean).mul(100);
    double maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0);
    assertTrue(maxMeanDeltaPerc < tolerancePerc);
    assertTrue(labelDeltaPerc.max(1).getDouble(0, 0) < tolerancePerc);

    INDArray stdDelta = Transforms.abs(theoreticalStd.sub(myNormalizer.getStd()));
    INDArray stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100);
    INDArray stdlabelDeltaPerc =
                    Transforms.abs(theoreticallabelStd.sub(myNormalizer.getLabelStd())).div(theoreticallabelStd);
    double maxStdDeltaPerc = stdDeltaPerc.max(1).mul(100).getDouble(0, 0);
    double maxlabelStdDeltaPerc = stdlabelDeltaPerc.max(1).getDouble(0, 0);
    assertTrue(maxStdDeltaPerc < tolerancePerc);
    assertTrue(maxlabelStdDeltaPerc < tolerancePerc);


    // SAME TEST WITH THE ITERATOR
    int bSize = 10;
    tolerancePerc = 0.1; // 1% of correct value
    DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize);
    myNormalizer.fit(sampleIter);

    meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
    meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100);
    maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0);
    assertTrue(maxMeanDeltaPerc < tolerancePerc);

    stdDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
    stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100);
    maxStdDeltaPerc = stdDeltaPerc.max(1).getDouble(0, 0);
    assertTrue(maxStdDeltaPerc < tolerancePerc);
}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:64,代码来源:NormalizerStandardizeLabelsTest.java

示例7: testTransform

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Test
public void testTransform() {
    /*Random dataset is generated such that
        AX + B where X is from a normal distribution with mean 0 and std 1
        The mean of above will be B and std A
        Obtained mean and std dev are compared to theoretical
        Transformed values should be the same as X with the same seed.
     */
    long randSeed = 2227724;

    int nFeatures = 2;
    int nSamples = 6400;
    int bsize = 8;
    int a = 5;
    int b = 100;
    INDArray sampleMean, sampleStd, sampleMeanDelta, sampleStdDelta, delta, deltaPerc;
    double maxDeltaPerc, sampleMeanSEM;

    genRandomDataSet normData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed);
    genRandomDataSet expectedData = new genRandomDataSet(nSamples, nFeatures, 1, 0, randSeed);
    genRandomDataSet beforeTransformData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed);

    NormalizerStandardize myNormalizer = new NormalizerStandardize();
    myNormalizer.fitLabel(true);
    DataSetIterator normIterator = normData.getIter(bsize);
    DataSetIterator expectedIterator = expectedData.getIter(bsize);
    DataSetIterator beforeTransformIterator = beforeTransformData.getIter(bsize);

    myNormalizer.fit(normIterator);

    double tolerancePerc = 0.5; //within 0.5%
    sampleMean = myNormalizer.getMean();
    sampleMeanDelta = Transforms.abs(sampleMean.sub(normData.theoreticalMean));
    assertTrue(sampleMeanDelta.mul(100).div(normData.theoreticalMean).max(1).getDouble(0, 0) < tolerancePerc);
    //sanity check to see if it's within the theoretical standard error of mean
    sampleMeanSEM = sampleMeanDelta.div(normData.theoreticalSEM).max(1).getDouble(0, 0);
    assertTrue(sampleMeanSEM < 2.6); //99% of the time it should be within this many SEMs

    tolerancePerc = 5; //within 5%
    sampleStd = myNormalizer.getStd();
    sampleStdDelta = Transforms.abs(sampleStd.sub(normData.theoreticalStd));
    assertTrue(sampleStdDelta.div(normData.theoreticalStd).max(1).mul(100).getDouble(0, 0) < tolerancePerc);

    tolerancePerc = 1; //within 1%
    normIterator.setPreProcessor(myNormalizer);
    while (normIterator.hasNext()) {
        INDArray before = beforeTransformIterator.next().getFeatures();
        DataSet here = normIterator.next();
        assertEquals(here.getFeatures(), here.getLabels()); //bootstrapping existing test on features
        INDArray after = here.getFeatures();
        INDArray expected = expectedIterator.next().getFeatures();
        delta = Transforms.abs(after.sub(expected));
        deltaPerc = delta.div(before.sub(expected));
        deltaPerc.muli(100);
        maxDeltaPerc = deltaPerc.max(0, 1).getDouble(0, 0);
        //System.out.println("=== BEFORE ===");
        //System.out.println(before);
        //System.out.println("=== AFTER ===");
        //System.out.println(after);
        //System.out.println("=== SHOULD BE ===");
        //System.out.println(expected);
        assertTrue(maxDeltaPerc < tolerancePerc);
    }
}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:65,代码来源:NormalizerStandardizeLabelsTest.java

示例8: testBruteForce

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Test
public void testBruteForce() {
    //X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
    //X_scaled = X_std * (max - min) + min
    // Dataset features are scaled consecutive natural numbers
    int nSamples = 500;
    int x = 4, y = 2, z = 3;

    INDArray featureX = Nd4j.linspace(1, nSamples, nSamples).reshape(nSamples, 1);
    INDArray featureY = featureX.mul(y);
    INDArray featureZ = featureX.mul(z);
    featureX.muli(x);
    INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ);
    INDArray labelSet = Nd4j.zeros(nSamples, 1);
    DataSet sampleDataSet = new DataSet(featureSet, labelSet);

    //expected min and max
    INDArray theoreticalMin = Nd4j.create(new double[] {x, y, z});
    INDArray theoreticalMax = Nd4j.create(new double[] {nSamples * x, nSamples * y, nSamples * z});
    INDArray theoreticalRange = theoreticalMax.sub(theoreticalMin);

    NormalizerMinMaxScaler myNormalizer = new NormalizerMinMaxScaler();
    myNormalizer.fit(sampleDataSet);

    INDArray minDataSet = myNormalizer.getMin();
    INDArray maxDataSet = myNormalizer.getMax();
    INDArray minDiff = minDataSet.sub(theoreticalMin).max(1);
    INDArray maxDiff = maxDataSet.sub(theoreticalMax).max(1);
    assertEquals(minDiff.getDouble(0, 0), 0.0, 0.000000001);
    assertEquals(maxDiff.max(1).getDouble(0, 0), 0.0, 0.000000001);

    // SAME TEST WITH THE ITERATOR
    int bSize = 1;
    DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize);
    myNormalizer.fit(sampleIter);
    minDataSet = myNormalizer.getMin();
    maxDataSet = myNormalizer.getMax();
    assertEquals(minDataSet.sub(theoreticalMin).max(1).getDouble(0, 0), 0.0, 0.000000001);
    assertEquals(maxDataSet.sub(theoreticalMax).max(1).getDouble(0, 0), 0.0, 0.000000001);

    sampleIter.setPreProcessor(myNormalizer);
    INDArray actual, expected, delta;
    int i = 1;
    while (sampleIter.hasNext()) {
        expected = theoreticalMin.mul(i - 1).div(theoreticalRange);
        actual = sampleIter.next().getFeatures();
        delta = Transforms.abs(actual.sub(expected));
        assertTrue(delta.max(1).getDouble(0, 0) < 0.0001);
        i++;
    }

}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:53,代码来源:NormalizerMinMaxScalerTest.java

示例9: testBruteForce

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Test
public void testBruteForce() {
    /* This test creates a dataset where feature values are multiples of consecutive natural numbers
       The obtained values are compared to the theoretical mean and std dev
     */
    double tolerancePerc = 0.01; // 0.01% of correct value
    int nSamples = 5120;
    int x = 1, y = 2, z = 3;

    INDArray featureX = Nd4j.linspace(1, nSamples, nSamples).reshape(nSamples, 1).mul(x);
    INDArray featureY = featureX.mul(y);
    INDArray featureZ = featureX.mul(z);
    INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ);
    INDArray labelSet = Nd4j.zeros(nSamples, 1);
    DataSet sampleDataSet = new DataSet(featureSet, labelSet);

    double meanNaturalNums = (nSamples + 1) / 2.0;
    INDArray theoreticalMean =
                    Nd4j.create(new double[] {meanNaturalNums * x, meanNaturalNums * y, meanNaturalNums * z});
    double stdNaturalNums = Math.sqrt((nSamples * nSamples - 1) / 12.0);
    INDArray theoreticalStd =
                    Nd4j.create(new double[] {stdNaturalNums * x, stdNaturalNums * y, stdNaturalNums * z});

    NormalizerStandardize myNormalizer = new NormalizerStandardize();
    myNormalizer.fit(sampleDataSet);

    INDArray meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
    INDArray meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100);
    double maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0);
    assertTrue(maxMeanDeltaPerc < tolerancePerc);

    INDArray stdDelta = Transforms.abs(theoreticalStd.sub(myNormalizer.getStd()));
    INDArray stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100);
    double maxStdDeltaPerc = stdDeltaPerc.max(1).getDouble(0, 0);
    assertTrue(maxStdDeltaPerc < tolerancePerc);

    // SAME TEST WITH THE ITERATOR
    int bSize = 10;
    tolerancePerc = 0.1; // 0.1% of correct value
    DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize);
    myNormalizer.fit(sampleIter);

    meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
    meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100);
    maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0);
    assertTrue(maxMeanDeltaPerc < tolerancePerc);

    stdDelta = Transforms.abs(theoreticalStd.sub(myNormalizer.getStd()));
    stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100);
    maxStdDeltaPerc = stdDeltaPerc.max(1).getDouble(0, 0);
    assertTrue(maxStdDeltaPerc < tolerancePerc);
}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:53,代码来源:NormalizerStandardizeTest.java

示例10: testTransform

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Test
public void testTransform() {
    /*Random dataset is generated such that
        AX + B where X is from a normal distribution with mean 0 and std 1
        The mean of above will be B and std A
        Obtained mean and std dev are compared to theoretical
        Transformed values should be the same as X with the same seed.
     */
    long randSeed = 41732786;

    int nFeatures = 2;
    int nSamples = 6400;
    int bsize = 8;
    int a = 5;
    int b = 100;
    INDArray sampleMean, sampleStd, sampleMeanDelta, sampleStdDelta, delta, deltaPerc;
    double maxDeltaPerc, sampleMeanSEM;

    genRandomDataSet normData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed);
    DataSet genRandExpected = normData.theoreticalTransform;
    genRandomDataSet expectedData = new genRandomDataSet(nSamples, nFeatures, 1, 0, randSeed);
    genRandomDataSet beforeTransformData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed);

    NormalizerStandardize myNormalizer = new NormalizerStandardize();
    DataSetIterator normIterator = normData.getIter(bsize);
    DataSetIterator genRandExpectedIter = new TestDataSetIterator(genRandExpected, bsize);
    DataSetIterator expectedIterator = expectedData.getIter(bsize);
    DataSetIterator beforeTransformIterator = beforeTransformData.getIter(bsize);

    myNormalizer.fit(normIterator);

    double tolerancePerc = 0.10; //within 0.1%
    sampleMean = myNormalizer.getMean();
    sampleMeanDelta = Transforms.abs(sampleMean.sub(normData.theoreticalMean));
    assertTrue(sampleMeanDelta.mul(100).div(normData.theoreticalMean).max(1).getDouble(0, 0) < tolerancePerc);
    //sanity check to see if it's within the theoretical standard error of mean
    sampleMeanSEM = sampleMeanDelta.div(normData.theoreticalSEM).max(1).getDouble(0, 0);
    assertTrue(sampleMeanSEM < 2.6); //99% of the time it should be within this many SEMs

    tolerancePerc = 1; //within 1% - std dev value
    sampleStd = myNormalizer.getStd();
    sampleStdDelta = Transforms.abs(sampleStd.sub(normData.theoreticalStd));

    assertTrue(sampleStdDelta.div(normData.theoreticalStd).max(1).mul(100).getDouble(0, 0) < tolerancePerc);

    tolerancePerc = 1; //within 1%
    normIterator.setPreProcessor(myNormalizer);
    while (normIterator.hasNext()) {
        INDArray before = beforeTransformIterator.next().getFeatures();
        INDArray origBefore = genRandExpectedIter.next().getFeatures();
        INDArray after = normIterator.next().getFeatures();
        INDArray expected = expectedIterator.next().getFeatures();
        delta = Transforms.abs(after.sub(expected));
        deltaPerc = delta.div(Transforms.abs(before.sub(expected)));
        deltaPerc.muli(100);
        maxDeltaPerc = deltaPerc.max(0, 1).getDouble(0, 0);
        /*
        System.out.println("=== BEFORE ===");
        System.out.println(before);
        System.out.println("=== ORIG BEFORE ===");
        System.out.println(origBefore);
        System.out.println("=== AFTER ===");
        System.out.println(after);
        System.out.println("=== SHOULD BE ===");
        System.out.println(expected);
        System.out.println("% diff, "+ maxDeltaPerc);
        */
        assertTrue(maxDeltaPerc < tolerancePerc);
    }
}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:71,代码来源:NormalizerStandardizeTest.java

示例11: noOp

import org.nd4j.linalg.ops.transforms.Transforms; //导入方法依赖的package包/类
@Override
public INDArray noOp() {
    return Transforms.abs(x());
}
 
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:5,代码来源:Norm2.java


注:本文中的org.nd4j.linalg.ops.transforms.Transforms.abs方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。