本文整理汇总了Java中org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize.fit方法的典型用法代码示例。如果您正苦于以下问题:Java NormalizerStandardize.fit方法的具体用法?Java NormalizerStandardize.fit怎么用?Java NormalizerStandardize.fit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize
的用法示例。
在下文中一共展示了NormalizerStandardize.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testBruteForce4d
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testBruteForce4d() {
Construct4dDataSet imageDataSet = new Construct4dDataSet(10, 5, 10, 15);
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fit(imageDataSet.sampleDataSet);
assertEquals(imageDataSet.expectedMean, myNormalizer.getMean());
float aat = Transforms.abs(myNormalizer.getStd().div(imageDataSet.expectedStd).sub(1)).maxNumber().floatValue();
float abt = myNormalizer.getStd().maxNumber().floatValue();
float act = imageDataSet.expectedStd.maxNumber().floatValue();
System.out.println("ValA: " + aat);
System.out.println("ValB: " + abt);
System.out.println("ValC: " + act);
assertTrue(aat < 0.05);
NormalizerMinMaxScaler myMinMaxScaler = new NormalizerMinMaxScaler();
myMinMaxScaler.fit(imageDataSet.sampleDataSet);
assertEquals(imageDataSet.expectedMin, myMinMaxScaler.getMin());
assertEquals(imageDataSet.expectedMax, myMinMaxScaler.getMax());
DataSet copyDataSet = imageDataSet.sampleDataSet.copy();
myNormalizer.transform(copyDataSet);
}
示例2: testRevert
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testRevert() {
double tolerancePerc = 0.01; // 0.01% of correct value
int nSamples = 500;
int nFeatures = 3;
INDArray featureSet = Nd4j.randn(nSamples, nFeatures);
INDArray labelSet = Nd4j.zeros(nSamples, 1);
DataSet sampleDataSet = new DataSet(featureSet, labelSet);
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fit(sampleDataSet);
DataSet transformed = sampleDataSet.copy();
myNormalizer.transform(transformed);
//System.out.println(transformed.getFeatures());
myNormalizer.revert(transformed);
//System.out.println(transformed.getFeatures());
INDArray delta = Transforms.abs(transformed.getFeatures().sub(sampleDataSet.getFeatures()))
.div(sampleDataSet.getFeatures());
double maxdeltaPerc = delta.max(0, 1).mul(100).getDouble(0, 0);
assertTrue(maxdeltaPerc < tolerancePerc);
}
示例3: testRestoreUnsavedNormalizerFromInputStream
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testRestoreUnsavedNormalizerFromInputStream() throws Exception {
DataSet dataSet = trivialDataSet();
NormalizerStandardize norm = new NormalizerStandardize();
norm.fit(dataSet);
ComputationGraph cg = simpleComputationGraph();
cg.init();
File tempFile = File.createTempFile("tsfs", "fdfsdf");
tempFile.deleteOnExit();
ModelSerializer.writeModel(cg, tempFile, true);
FileInputStream fis = new FileInputStream(tempFile);
NormalizerStandardize restored = ModelSerializer.restoreNormalizerFromInputStream(fis);
assertEquals(null, restored);
}
示例4: testMeanStdZeros
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testMeanStdZeros() {
List<List<Writable>> data = new ArrayList<>();
Schema.Builder builder = new Schema.Builder();
int numColumns = 6;
for (int i = 0; i < numColumns; i++)
builder.addColumnDouble(String.valueOf(i));
for (int i = 0; i < 5; i++) {
List<Writable> record = new ArrayList<>(numColumns);
data.add(record);
for (int j = 0; j < numColumns; j++) {
record.add(new DoubleWritable(1.0));
}
}
INDArray arr = RecordConverter.toMatrix(data);
Schema schema = builder.build();
JavaRDD<List<Writable>> rdd = sc.parallelize(data);
DataRowsFacade dataFrame = DataFrames.toDataFrame(schema, rdd);
//assert equivalent to the ndarray pre processing
NormalizerStandardize standardScaler = new NormalizerStandardize();
standardScaler.fit(new DataSet(arr.dup(), arr.dup()));
INDArray standardScalered = arr.dup();
standardScaler.transform(new DataSet(standardScalered, standardScalered));
DataNormalization zeroToOne = new NormalizerMinMaxScaler();
zeroToOne.fit(new DataSet(arr.dup(), arr.dup()));
INDArray zeroToOnes = arr.dup();
zeroToOne.transform(new DataSet(zeroToOnes, zeroToOnes));
List<Row> rows = Normalization.stdDevMeanColumns(dataFrame, dataFrame.get().columns());
INDArray assertion = DataFrames.toMatrix(rows);
//compare standard deviation
assertTrue(standardScaler.getStd().equalsWithEps(assertion.getRow(0), 1e-1));
//compare mean
assertTrue(standardScaler.getMean().equalsWithEps(assertion.getRow(1), 1e-1));
}
示例5: irisCsv
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
static DataIterator<NormalizerStandardize> irisCsv(String name) {
CSVRecordReader recordReader = new CSVRecordReader(0, ",");
try {
recordReader.initialize(new FileSplit(new File(name)));
} catch (Exception e) {
e.printStackTrace();
}
int labelIndex = 4; //5 values in each row of the iris.txt CSV: 4 input features followed by an integer label (class) index. Labels are the 5th value (index 4) in each row
int numClasses = 3; //3 classes (types of iris flowers) in the iris data set. Classes have integer values 0, 1 or 2
int batchSize = 50; //Iris data set: 150 examples total.
RecordReaderDataSetIterator iterator = new RecordReaderDataSetIterator(
recordReader,
batchSize,
labelIndex,
numClasses
);
NormalizerStandardize normalizer = new NormalizerStandardize();
while (iterator.hasNext()) {
normalizer.fit(iterator.next());
}
iterator.reset();
iterator.setPreProcessor(normalizer);
return new DataIterator<>(iterator, normalizer);
}
示例6: testBruteForce3d
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testBruteForce3d() {
NormalizerStandardize myNormalizer = new NormalizerStandardize();
NormalizerMinMaxScaler myMinMaxScaler = new NormalizerMinMaxScaler();
int timeSteps = 15;
int samples = 100;
//multiplier for the features
INDArray featureScaleA = Nd4j.create(new double[] {1, -2, 3}).reshape(3, 1);
INDArray featureScaleB = Nd4j.create(new double[] {2, 2, 3}).reshape(3, 1);
Construct3dDataSet caseA = new Construct3dDataSet(featureScaleA, timeSteps, samples, 1);
Construct3dDataSet caseB = new Construct3dDataSet(featureScaleB, timeSteps, samples, 1);
myNormalizer.fit(caseA.sampleDataSet);
assertEquals(caseA.expectedMean, myNormalizer.getMean());
assertTrue(Transforms.abs(myNormalizer.getStd().div(caseA.expectedStd).sub(1)).maxNumber().floatValue() < 0.01);
myMinMaxScaler.fit(caseB.sampleDataSet);
assertEquals(caseB.expectedMin, myMinMaxScaler.getMin());
assertEquals(caseB.expectedMax, myMinMaxScaler.getMax());
//Same Test with an Iterator, values should be close for std, exact for everything else
DataSetIterator sampleIterA = new TestDataSetIterator(caseA.sampleDataSet, 5);
DataSetIterator sampleIterB = new TestDataSetIterator(caseB.sampleDataSet, 5);
myNormalizer.fit(sampleIterA);
assertEquals(myNormalizer.getMean(), caseA.expectedMean);
assertTrue(Transforms.abs(myNormalizer.getStd().div(caseA.expectedStd).sub(1)).maxNumber().floatValue() < 0.01);
myMinMaxScaler.fit(sampleIterB);
assertEquals(myMinMaxScaler.getMin(), caseB.expectedMin);
assertEquals(myMinMaxScaler.getMax(), caseB.expectedMax);
}
示例7: testDifferentBatchSizes
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testDifferentBatchSizes() {
// Create 6x1 matrix of the numbers 1 through 6
INDArray values = Nd4j.linspace(1, 6, 6).transpose();
DataSet dataSet = new DataSet(values, values);
// Test fitting a DataSet
NormalizerStandardize norm1 = new NormalizerStandardize();
norm1.fit(dataSet);
assertEquals(3.5f, norm1.getMean().getFloat(0), 1e-6);
assertEquals(1.70783f, norm1.getStd().getFloat(0), 1e-4);
// Test fitting an iterator with equal batch sizes
DataSetIterator testIter1 = new TestDataSetIterator(dataSet, 3); // Will yield 2 batches of 3 rows
NormalizerStandardize norm2 = new NormalizerStandardize();
norm2.fit(testIter1);
assertEquals(3.5f, norm2.getMean().getFloat(0), 1e-6);
assertEquals(1.70783f, norm2.getStd().getFloat(0), 1e-4);
// Test fitting an iterator with varying batch sizes
DataSetIterator testIter2 = new TestDataSetIterator(dataSet, 4); // Will yield batch of 4 and batch of 2 rows
NormalizerStandardize norm3 = new NormalizerStandardize();
norm3.fit(testIter2);
assertEquals(3.5f, norm3.getMean().getFloat(0), 1e-6);
assertEquals(1.70783f, norm3.getStd().getFloat(0), 1e-4);
// Test fitting an iterator with batches of single rows
DataSetIterator testIter3 = new TestDataSetIterator(dataSet, 1); // Will yield 6 batches of 1 row
NormalizerStandardize norm4 = new NormalizerStandardize();
norm4.fit(testIter3);
assertEquals(3.5f, norm4.getMean().getFloat(0), 1e-6);
assertEquals(1.70783f, norm4.getStd().getFloat(0), 1e-4);
}
示例8: testUnderOverflow
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testUnderOverflow() {
// This dataset will be basically constant with a small std deviation
// And the constant is large. Checking if algorithm can handle
double tolerancePerc = 1; //Within 1 %
double toleranceAbs = 0.0005;
int nSamples = 1000;
int bSize = 10;
int x = -1000000, y = 1000000;
double z = 1000000;
INDArray featureX = Nd4j.rand(nSamples, 1).mul(1).add(x);
INDArray featureY = Nd4j.rand(nSamples, 1).mul(2).add(y);
INDArray featureZ = Nd4j.rand(nSamples, 1).mul(3).add(z);
INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ);
INDArray labelSet = Nd4j.zeros(nSamples, 1);
DataSet sampleDataSet = new DataSet(featureSet, labelSet);
DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize);
INDArray theoreticalMean = Nd4j.create(new double[] {x, y, z});
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fit(sampleIter);
INDArray meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
INDArray meanDeltaPerc = meanDelta.mul(100).div(theoreticalMean);
assertTrue(meanDeltaPerc.max(1).getDouble(0, 0) < tolerancePerc);
//this just has to not barf
//myNormalizer.transform(sampleIter);
myNormalizer.transform(sampleDataSet);
}
示例9: testConstant
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testConstant() {
double tolerancePerc = 10.0; // 10% of correct value
int nSamples = 500;
int nFeatures = 3;
int constant = 100;
INDArray featureSet = Nd4j.zeros(nSamples, nFeatures).add(constant);
INDArray labelSet = Nd4j.zeros(nSamples, 1);
DataSet sampleDataSet = new DataSet(featureSet, labelSet);
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fit(sampleDataSet);
//Checking if we gets nans
assertFalse(Double.isNaN(myNormalizer.getStd().getDouble(0)));
myNormalizer.transform(sampleDataSet);
//Checking if we gets nans, because std dev is zero
assertFalse(Double.isNaN(sampleDataSet.getFeatures().min(0, 1).getDouble(0)));
//Checking to see if transformed values are close enough to zero
assertEquals(Transforms.abs(sampleDataSet.getFeatures()).max(0, 1).getDouble(0, 0), 0,
constant * tolerancePerc / 100.0);
myNormalizer.revert(sampleDataSet);
//Checking if we gets nans, because std dev is zero
assertFalse(Double.isNaN(sampleDataSet.getFeatures().min(0, 1).getDouble(0)));
assertEquals(Transforms.abs(sampleDataSet.getFeatures().sub(featureSet)).min(0, 1).getDouble(0), 0,
constant * tolerancePerc / 100.0);
}
示例10: normalize
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Override
public void normalize() {
//FeatureUtil.normalizeMatrix(getFeatures());
NormalizerStandardize inClassPreProcessor = new NormalizerStandardize();
inClassPreProcessor.fit(this);
inClassPreProcessor.transform(this);
}
示例11: testRocMultiToHtml
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testRocMultiToHtml() throws Exception {
DataSetIterator iter = new IrisDataSetIterator(150, 150);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER).list()
.layer(0, new DenseLayer.Builder().nIn(4).nOut(4).activation(Activation.TANH).build()).layer(1,
new OutputLayer.Builder().nIn(4).nOut(3).activation(Activation.SOFTMAX)
.lossFunction(LossFunctions.LossFunction.MCXENT).build())
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
NormalizerStandardize ns = new NormalizerStandardize();
DataSet ds = iter.next();
ns.fit(ds);
ns.transform(ds);
for (int i = 0; i < 30; i++) {
net.fit(ds);
}
for (int numSteps : new int[] {20, 0}) {
ROCMultiClass roc = new ROCMultiClass(numSteps);
iter.reset();
INDArray f = ds.getFeatures();
INDArray l = ds.getLabels();
INDArray out = net.output(f);
roc.eval(l, out);
String str = EvaluationTools.rocChartToHtml(roc, Arrays.asList("setosa", "versicolor", "virginica"));
System.out.println(str);
}
}
示例12: normalizationTests
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void normalizationTests() {
List<List<Writable>> data = new ArrayList<>();
Schema.Builder builder = new Schema.Builder();
int numColumns = 6;
for (int i = 0; i < numColumns; i++)
builder.addColumnDouble(String.valueOf(i));
for (int i = 0; i < 5; i++) {
List<Writable> record = new ArrayList<>(numColumns);
data.add(record);
for (int j = 0; j < numColumns; j++) {
record.add(new DoubleWritable(1.0));
}
}
INDArray arr = RecordConverter.toMatrix(data);
Schema schema = builder.build();
JavaRDD<List<Writable>> rdd = sc.parallelize(data);
assertEquals(schema, DataFrames.fromStructType(DataFrames.fromSchema(schema)));
assertEquals(rdd.collect(), DataFrames.toRecords(DataFrames.toDataFrame(schema, rdd)).getSecond().collect());
DataRowsFacade dataFrame = DataFrames.toDataFrame(schema, rdd);
dataFrame.get().show();
Normalization.zeromeanUnitVariance(dataFrame).get().show();
Normalization.normalize(dataFrame).get().show();
//assert equivalent to the ndarray pre processing
NormalizerStandardize standardScaler = new NormalizerStandardize();
standardScaler.fit(new DataSet(arr.dup(), arr.dup()));
INDArray standardScalered = arr.dup();
standardScaler.transform(new DataSet(standardScalered, standardScalered));
DataNormalization zeroToOne = new NormalizerMinMaxScaler();
zeroToOne.fit(new DataSet(arr.dup(), arr.dup()));
INDArray zeroToOnes = arr.dup();
zeroToOne.transform(new DataSet(zeroToOnes, zeroToOnes));
INDArray zeroMeanUnitVarianceDataFrame =
RecordConverter.toMatrix(Normalization.zeromeanUnitVariance(schema, rdd).collect());
INDArray zeroMeanUnitVarianceDataFrameZeroToOne =
RecordConverter.toMatrix(Normalization.normalize(schema, rdd).collect());
assertEquals(standardScalered, zeroMeanUnitVarianceDataFrame);
assertTrue(zeroToOnes.equalsWithEps(zeroMeanUnitVarianceDataFrameZeroToOne, 1e-1));
}
示例13: testBruteForce
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testBruteForce() {
/* This test creates a dataset where feature values are multiples of consecutive natural numbers
The obtained values are compared to the theoretical mean and std dev
*/
double tolerancePerc = 0.01;
int nSamples = 5120;
int x = 1, y = 2, z = 3;
INDArray featureX = Nd4j.linspace(1, nSamples, nSamples).reshape(nSamples, 1).mul(x);
INDArray featureY = featureX.mul(y);
INDArray featureZ = featureX.mul(z);
INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ);
INDArray labelSet = featureSet.dup().getColumns(new int[] {0});
DataSet sampleDataSet = new DataSet(featureSet, labelSet);
double meanNaturalNums = (nSamples + 1) / 2.0;
INDArray theoreticalMean =
Nd4j.create(new double[] {meanNaturalNums * x, meanNaturalNums * y, meanNaturalNums * z});
INDArray theoreticallabelMean = theoreticalMean.dup().getColumns(new int[] {0});
double stdNaturalNums = Math.sqrt((nSamples * nSamples - 1) / 12.0);
INDArray theoreticalStd =
Nd4j.create(new double[] {stdNaturalNums * x, stdNaturalNums * y, stdNaturalNums * z});
INDArray theoreticallabelStd = theoreticalStd.dup().getColumns(new int[] {0});
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fitLabel(true);
myNormalizer.fit(sampleDataSet);
INDArray meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
INDArray labelDelta = Transforms.abs(theoreticallabelMean.sub(myNormalizer.getLabelMean()));
INDArray meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100);
INDArray labelDeltaPerc = labelDelta.div(theoreticallabelMean).mul(100);
double maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0);
assertTrue(maxMeanDeltaPerc < tolerancePerc);
assertTrue(labelDeltaPerc.max(1).getDouble(0, 0) < tolerancePerc);
INDArray stdDelta = Transforms.abs(theoreticalStd.sub(myNormalizer.getStd()));
INDArray stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100);
INDArray stdlabelDeltaPerc =
Transforms.abs(theoreticallabelStd.sub(myNormalizer.getLabelStd())).div(theoreticallabelStd);
double maxStdDeltaPerc = stdDeltaPerc.max(1).mul(100).getDouble(0, 0);
double maxlabelStdDeltaPerc = stdlabelDeltaPerc.max(1).getDouble(0, 0);
assertTrue(maxStdDeltaPerc < tolerancePerc);
assertTrue(maxlabelStdDeltaPerc < tolerancePerc);
// SAME TEST WITH THE ITERATOR
int bSize = 10;
tolerancePerc = 0.1; // 1% of correct value
DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize);
myNormalizer.fit(sampleIter);
meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100);
maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0);
assertTrue(maxMeanDeltaPerc < tolerancePerc);
stdDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100);
maxStdDeltaPerc = stdDeltaPerc.max(1).getDouble(0, 0);
assertTrue(maxStdDeltaPerc < tolerancePerc);
}
示例14: testTransform
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testTransform() {
/*Random dataset is generated such that
AX + B where X is from a normal distribution with mean 0 and std 1
The mean of above will be B and std A
Obtained mean and std dev are compared to theoretical
Transformed values should be the same as X with the same seed.
*/
long randSeed = 2227724;
int nFeatures = 2;
int nSamples = 6400;
int bsize = 8;
int a = 5;
int b = 100;
INDArray sampleMean, sampleStd, sampleMeanDelta, sampleStdDelta, delta, deltaPerc;
double maxDeltaPerc, sampleMeanSEM;
genRandomDataSet normData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed);
genRandomDataSet expectedData = new genRandomDataSet(nSamples, nFeatures, 1, 0, randSeed);
genRandomDataSet beforeTransformData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed);
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fitLabel(true);
DataSetIterator normIterator = normData.getIter(bsize);
DataSetIterator expectedIterator = expectedData.getIter(bsize);
DataSetIterator beforeTransformIterator = beforeTransformData.getIter(bsize);
myNormalizer.fit(normIterator);
double tolerancePerc = 0.5; //within 0.5%
sampleMean = myNormalizer.getMean();
sampleMeanDelta = Transforms.abs(sampleMean.sub(normData.theoreticalMean));
assertTrue(sampleMeanDelta.mul(100).div(normData.theoreticalMean).max(1).getDouble(0, 0) < tolerancePerc);
//sanity check to see if it's within the theoretical standard error of mean
sampleMeanSEM = sampleMeanDelta.div(normData.theoreticalSEM).max(1).getDouble(0, 0);
assertTrue(sampleMeanSEM < 2.6); //99% of the time it should be within this many SEMs
tolerancePerc = 5; //within 5%
sampleStd = myNormalizer.getStd();
sampleStdDelta = Transforms.abs(sampleStd.sub(normData.theoreticalStd));
assertTrue(sampleStdDelta.div(normData.theoreticalStd).max(1).mul(100).getDouble(0, 0) < tolerancePerc);
tolerancePerc = 1; //within 1%
normIterator.setPreProcessor(myNormalizer);
while (normIterator.hasNext()) {
INDArray before = beforeTransformIterator.next().getFeatures();
DataSet here = normIterator.next();
assertEquals(here.getFeatures(), here.getLabels()); //bootstrapping existing test on features
INDArray after = here.getFeatures();
INDArray expected = expectedIterator.next().getFeatures();
delta = Transforms.abs(after.sub(expected));
deltaPerc = delta.div(before.sub(expected));
deltaPerc.muli(100);
maxDeltaPerc = deltaPerc.max(0, 1).getDouble(0, 0);
//System.out.println("=== BEFORE ===");
//System.out.println(before);
//System.out.println("=== AFTER ===");
//System.out.println(after);
//System.out.println("=== SHOULD BE ===");
//System.out.println(expected);
assertTrue(maxDeltaPerc < tolerancePerc);
}
}
示例15: testBruteForce3dMaskLabels
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; //导入方法依赖的package包/类
@Test
public void testBruteForce3dMaskLabels() {
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fitLabel(true);
NormalizerMinMaxScaler myMinMaxScaler = new NormalizerMinMaxScaler();
myMinMaxScaler.fitLabel(true);
//generating a dataset with consecutive numbers as feature values. Dataset also has masks
int samples = 100;
INDArray featureScale = Nd4j.create(new float[] {1, 2, 10}).reshape(3, 1);
int timeStepsU = 5;
Construct3dDataSet sampleU = new Construct3dDataSet(featureScale, timeStepsU, samples, 1);
int timeStepsV = 3;
Construct3dDataSet sampleV = new Construct3dDataSet(featureScale, timeStepsV, samples, sampleU.newOrigin);
List<DataSet> dataSetList = new ArrayList<DataSet>();
dataSetList.add(sampleU.sampleDataSet);
dataSetList.add(sampleV.sampleDataSet);
DataSet fullDataSetA = DataSet.merge(dataSetList);
DataSet fullDataSetAA = fullDataSetA.copy();
//This should be the same datasets as above without a mask
Construct3dDataSet fullDataSetNoMask =
new Construct3dDataSet(featureScale, timeStepsU + timeStepsV, samples, 1);
//preprocessors - label and feature values are the same
myNormalizer.fit(fullDataSetA);
assertEquals(myNormalizer.getMean(), fullDataSetNoMask.expectedMean);
assertEquals(myNormalizer.getStd(), fullDataSetNoMask.expectedStd);
assertEquals(myNormalizer.getLabelMean(), fullDataSetNoMask.expectedMean);
assertEquals(myNormalizer.getLabelStd(), fullDataSetNoMask.expectedStd);
myMinMaxScaler.fit(fullDataSetAA);
assertEquals(myMinMaxScaler.getMin(), fullDataSetNoMask.expectedMin);
assertEquals(myMinMaxScaler.getMax(), fullDataSetNoMask.expectedMax);
assertEquals(myMinMaxScaler.getLabelMin(), fullDataSetNoMask.expectedMin);
assertEquals(myMinMaxScaler.getLabelMax(), fullDataSetNoMask.expectedMax);
//Same Test with an Iterator, values should be close for std, exact for everything else
DataSetIterator sampleIterA = new TestDataSetIterator(fullDataSetA, 5);
DataSetIterator sampleIterB = new TestDataSetIterator(fullDataSetAA, 5);
myNormalizer.fit(sampleIterA);
assertEquals(myNormalizer.getMean(), fullDataSetNoMask.expectedMean);
assertEquals(myNormalizer.getLabelMean(), fullDataSetNoMask.expectedMean);
assertTrue(Transforms.abs(myNormalizer.getStd().div(fullDataSetNoMask.expectedStd).sub(1)).maxNumber()
.floatValue() < 0.01);
assertTrue(Transforms.abs(myNormalizer.getLabelStd().div(fullDataSetNoMask.expectedStd).sub(1)).maxNumber()
.floatValue() < 0.01);
myMinMaxScaler.fit(sampleIterB);
assertEquals(myMinMaxScaler.getMin(), fullDataSetNoMask.expectedMin);
assertEquals(myMinMaxScaler.getMax(), fullDataSetNoMask.expectedMax);
assertEquals(myMinMaxScaler.getLabelMin(), fullDataSetNoMask.expectedMin);
assertEquals(myMinMaxScaler.getLabelMax(), fullDataSetNoMask.expectedMax);
}