当前位置: 首页>>代码示例>>Java>>正文


Java MultiLayerNetwork.setLayerMaskArrays方法代码示例

本文整理汇总了Java中org.deeplearning4j.nn.multilayer.MultiLayerNetwork.setLayerMaskArrays方法的典型用法代码示例。如果您正苦于以下问题:Java MultiLayerNetwork.setLayerMaskArrays方法的具体用法?Java MultiLayerNetwork.setLayerMaskArrays怎么用?Java MultiLayerNetwork.setLayerMaskArrays使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.deeplearning4j.nn.multilayer.MultiLayerNetwork的用法示例。


在下文中一共展示了MultiLayerNetwork.setLayerMaskArrays方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: testLSTMWithMasking

import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; //导入方法依赖的package包/类
@Test
public void testLSTMWithMasking() {
    //Basic test of GravesLSTM layer
    Nd4j.getRandom().setSeed(12345L);

    int timeSeriesLength = 10;
    int nIn = 5;
    int layerSize = 4;
    int nOut = 2;

    int miniBatchSize = 3;
    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.AVG, PoolingType.SUM, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {

        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                        .updater(new NoOp()).weightInit(WeightInit.DISTRIBUTION)
                        .dist(new NormalDistribution(0, 1.0)).seed(12345L).list()
                        .layer(0, new GravesLSTM.Builder().nIn(nIn).nOut(layerSize).activation(Activation.TANH)
                                        .build())
                        .layer(1, new GlobalPoolingLayer.Builder().poolingType(pt).build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(layerSize).nOut(nOut).build())
                        .pretrain(false).backprop(true).build();

        MultiLayerNetwork mln = new MultiLayerNetwork(conf);
        mln.init();

        Random r = new Random(12345L);
        INDArray input = Nd4j.zeros(miniBatchSize, nIn, timeSeriesLength);
        for (int i = 0; i < miniBatchSize; i++) {
            for (int j = 0; j < nIn; j++) {
                for (int k = 0; k < timeSeriesLength; k++) {
                    input.putScalar(new int[] {i, j, k}, r.nextDouble() - 0.5);
                }
            }
        }

        INDArray featuresMask = Nd4j.create(miniBatchSize, timeSeriesLength);
        for (int i = 0; i < miniBatchSize; i++) {
            int to = timeSeriesLength - i;
            for (int j = 0; j < to; j++) {
                featuresMask.putScalar(i, j, 1.0);
            }
        }

        INDArray labels = Nd4j.zeros(miniBatchSize, nOut);
        for (int i = 0; i < miniBatchSize; i++) {
            int idx = r.nextInt(nOut);
            labels.putScalar(i, idx, 1.0);
        }

        mln.setLayerMaskArrays(featuresMask, null);

        if (PRINT_RESULTS) {
            System.out.println("testLSTMGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = " + miniBatchSize);
            for (int j = 0; j < mln.getnLayers(); j++)
                System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
        }

        boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
                        DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, featuresMask, null);

        assertTrue(gradOK);
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:68,代码来源:GlobalPoolingGradientCheckTests.java

示例2: testMaskingRnn

import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; //导入方法依赖的package包/类
@Test
public void testMaskingRnn() {


    int timeSeriesLength = 5;
    int nIn = 5;
    int layerSize = 4;
    int nOut = 2;
    int[] minibatchSizes = new int[] {1, 3};

    for (int miniBatchSize : minibatchSizes) {

        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                        .updater(new NoOp()).weightInit(WeightInit.DISTRIBUTION)
                        .dist(new NormalDistribution(0, 1.0)).seed(12345L).list()
                        .layer(0, new GravesLSTM.Builder().nIn(nIn).nOut(layerSize).activation(Activation.TANH)
                                        .build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder()
                                        .poolingType(PoolingType.AVG).build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(layerSize).nOut(nOut).build())
                        .pretrain(false).backprop(true).build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        Random r = new Random(12345L);
        INDArray input = Nd4j.rand(new int[] {miniBatchSize, nIn, timeSeriesLength}).subi(0.5);

        INDArray mask;
        if (miniBatchSize == 1) {
            mask = Nd4j.create(new double[] {1, 1, 1, 1, 0});
        } else {
            mask = Nd4j.create(new double[][] {{1, 1, 1, 1, 1}, {1, 1, 1, 1, 0}, {1, 1, 1, 0, 0}});
        }

        INDArray labels = Nd4j.zeros(miniBatchSize, nOut);
        for (int i = 0; i < miniBatchSize; i++) {
            int idx = r.nextInt(nOut);
            labels.putScalar(i, idx, 1.0);
        }

        net.setLayerMaskArrays(mask, null);
        INDArray outputMasked = net.output(input);

        net.clearLayerMaskArrays();

        for (int i = 0; i < miniBatchSize; i++) {
            INDArray maskRow = mask.getRow(i);
            int tsLength = maskRow.sumNumber().intValue();
            INDArray inputSubset = input.get(NDArrayIndex.interval(i, i, true), NDArrayIndex.all(),
                            NDArrayIndex.interval(0, tsLength));

            INDArray outSubset = net.output(inputSubset);
            INDArray outputMaskedSubset = outputMasked.getRow(i);

            assertEquals(outSubset, outputMaskedSubset);
        }
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:61,代码来源:GlobalPoolingMaskingTests.java

示例3: testMaskingCnnDim3_SingleExample

import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; //导入方法依赖的package包/类
@Test
public void testMaskingCnnDim3_SingleExample() {
    //Test masking, where mask is along dimension 3

    int minibatch = 1;
    int depthIn = 2;
    int depthOut = 2;
    int nOut = 2;
    int height = 3;
    int width = 6;

    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.SUM, PoolingType.AVG, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
                        .convolutionMode(ConvolutionMode.Same).seed(12345L).list()
                        .layer(0, new ConvolutionLayer.Builder().nIn(depthIn).nOut(depthOut).kernelSize(height, 2)
                                        .stride(height, 1).activation(Activation.TANH).build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder().poolingType(pt)
                                        .build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(depthOut).nOut(nOut).build())
                        .pretrain(false).backprop(true).build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        INDArray inToBeMasked = Nd4j.rand(new int[] {minibatch, depthIn, height, width});

        //Shape for mask: [minibatch, width]
        INDArray maskArray = Nd4j.create(new double[] {1, 1, 1, 1, 1, 0});

        //Multiply the input by the mask array, to ensure the 0s in the mask correspond to 0s in the input vector
        // as would be the case in practice...
        Nd4j.getExecutioner().exec(new BroadcastMulOp(inToBeMasked, maskArray, inToBeMasked, 0, 3));


        net.setLayerMaskArrays(maskArray, null);

        INDArray outMasked = net.output(inToBeMasked);
        net.clearLayerMaskArrays();

        int numSteps = width - 1;
        INDArray subset = inToBeMasked.get(NDArrayIndex.interval(0, 0, true), NDArrayIndex.all(),
                        NDArrayIndex.all(), NDArrayIndex.interval(0, numSteps));
        assertArrayEquals(new int[] {1, depthIn, height, 5}, subset.shape());

        INDArray outSubset = net.output(subset);
        INDArray outMaskedSubset = outMasked.getRow(0);

        assertEquals(outSubset, outMaskedSubset);

        //Finally: check gradient calc for exceptions
        net.setLayerMaskArrays(maskArray, null);
        net.setInput(inToBeMasked);
        INDArray labels = Nd4j.create(new double[] {0, 1});
        net.setLabels(labels);

        net.computeGradientAndScore();
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:63,代码来源:GlobalPoolingMaskingTests.java

示例4: testMaskingCnnDim2_SingleExample

import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; //导入方法依赖的package包/类
@Test
public void testMaskingCnnDim2_SingleExample() {
    //Test masking, where mask is along dimension 2

    int minibatch = 1;
    int depthIn = 2;
    int depthOut = 2;
    int nOut = 2;
    int height = 6;
    int width = 3;

    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.SUM, PoolingType.AVG, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
                        .convolutionMode(ConvolutionMode.Same).seed(12345L).list()
                        .layer(0, new ConvolutionLayer.Builder().nIn(depthIn).nOut(depthOut).kernelSize(2, width)
                                        .stride(1, width).activation(Activation.TANH).build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder().poolingType(pt)
                                        .build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(depthOut).nOut(nOut).build())
                        .pretrain(false).backprop(true).build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        INDArray inToBeMasked = Nd4j.rand(new int[] {minibatch, depthIn, height, width});

        //Shape for mask: [minibatch, width]
        INDArray maskArray = Nd4j.create(new double[] {1, 1, 1, 1, 1, 0});

        //Multiply the input by the mask array, to ensure the 0s in the mask correspond to 0s in the input vector
        // as would be the case in practice...
        Nd4j.getExecutioner().exec(new BroadcastMulOp(inToBeMasked, maskArray, inToBeMasked, 0, 2));


        net.setLayerMaskArrays(maskArray, null);

        INDArray outMasked = net.output(inToBeMasked);
        net.clearLayerMaskArrays();

        int numSteps = height - 1;
        INDArray subset = inToBeMasked.get(NDArrayIndex.interval(0, 0, true), NDArrayIndex.all(),
                        NDArrayIndex.interval(0, numSteps), NDArrayIndex.all());
        assertArrayEquals(new int[] {1, depthIn, 5, width}, subset.shape());

        INDArray outSubset = net.output(subset);
        INDArray outMaskedSubset = outMasked.getRow(0);

        assertEquals(outSubset, outMaskedSubset);

        //Finally: check gradient calc for exceptions
        net.setLayerMaskArrays(maskArray, null);
        net.setInput(inToBeMasked);
        INDArray labels = Nd4j.create(new double[] {0, 1});
        net.setLabels(labels);

        net.computeGradientAndScore();
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:63,代码来源:GlobalPoolingMaskingTests.java

示例5: testMaskingCnnDim3

import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; //导入方法依赖的package包/类
@Test
public void testMaskingCnnDim3() {
    //Test masking, where mask is along dimension 3

    int minibatch = 3;
    int depthIn = 3;
    int depthOut = 4;
    int nOut = 5;
    int height = 3;
    int width = 6;

    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.SUM, PoolingType.AVG, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
                        .convolutionMode(ConvolutionMode.Same).seed(12345L).list()
                        .layer(0, new ConvolutionLayer.Builder().nIn(depthIn).nOut(depthOut).kernelSize(height, 2)
                                        .stride(height, 1).activation(Activation.TANH).build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder().poolingType(pt)
                                        .build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(depthOut).nOut(nOut).build())
                        .pretrain(false).backprop(true).build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        INDArray inToBeMasked = Nd4j.rand(new int[] {minibatch, depthIn, height, width});

        //Shape for mask: [minibatch, width]
        INDArray maskArray =
                        Nd4j.create(new double[][] {{1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 0}, {1, 1, 1, 1, 0, 0}});

        //Multiply the input by the mask array, to ensure the 0s in the mask correspond to 0s in the input vector
        // as would be the case in practice...
        Nd4j.getExecutioner().exec(new BroadcastMulOp(inToBeMasked, maskArray, inToBeMasked, 0, 3));


        net.setLayerMaskArrays(maskArray, null);

        INDArray outMasked = net.output(inToBeMasked);
        net.clearLayerMaskArrays();

        for (int i = 0; i < minibatch; i++) {
            System.out.println(i);
            int numSteps = width - i;
            INDArray subset = inToBeMasked.get(NDArrayIndex.interval(i, i, true), NDArrayIndex.all(),
                            NDArrayIndex.all(), NDArrayIndex.interval(0, numSteps));
            assertArrayEquals(new int[] {1, depthIn, height, width - i}, subset.shape());

            INDArray outSubset = net.output(subset);
            INDArray outMaskedSubset = outMasked.getRow(i);

            assertEquals(outSubset, outMaskedSubset);
        }
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:59,代码来源:GlobalPoolingMaskingTests.java

示例6: testMaskingCnnDim2

import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; //导入方法依赖的package包/类
@Test
public void testMaskingCnnDim2() {
    //Test masking, where mask is along dimension 2

    int minibatch = 3;
    int depthIn = 3;
    int depthOut = 4;
    int nOut = 5;
    int height = 5;
    int width = 4;

    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.SUM, PoolingType.AVG, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
                        .convolutionMode(ConvolutionMode.Same).seed(12345L).list()
                        .layer(0, new ConvolutionLayer.Builder().nIn(depthIn).nOut(depthOut).kernelSize(2, width)
                                        .stride(1, width).activation(Activation.TANH).build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder().poolingType(pt)
                                        .build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(depthOut).nOut(nOut).build())
                        .pretrain(false).backprop(true).build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        INDArray inToBeMasked = Nd4j.rand(new int[] {minibatch, depthIn, height, width});

        //Shape for mask: [minibatch, width]
        INDArray maskArray = Nd4j.create(new double[][] {{1, 1, 1, 1, 1}, {1, 1, 1, 1, 0}, {1, 1, 1, 0, 0}});

        //Multiply the input by the mask array, to ensure the 0s in the mask correspond to 0s in the input vector
        // as would be the case in practice...
        Nd4j.getExecutioner().exec(new BroadcastMulOp(inToBeMasked, maskArray, inToBeMasked, 0, 2));


        net.setLayerMaskArrays(maskArray, null);

        INDArray outMasked = net.output(inToBeMasked);
        net.clearLayerMaskArrays();

        for (int i = 0; i < minibatch; i++) {
            System.out.println(i);
            int numSteps = height - i;
            INDArray subset = inToBeMasked.get(NDArrayIndex.interval(i, i, true), NDArrayIndex.all(),
                            NDArrayIndex.interval(0, numSteps), NDArrayIndex.all());
            assertArrayEquals(new int[] {1, depthIn, height - i, width}, subset.shape());

            INDArray outSubset = net.output(subset);
            INDArray outMaskedSubset = outMasked.getRow(i);

            assertEquals(outSubset, outMaskedSubset);
        }
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:58,代码来源:GlobalPoolingMaskingTests.java


注:本文中的org.deeplearning4j.nn.multilayer.MultiLayerNetwork.setLayerMaskArrays方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。