当前位置: 首页>>代码示例>>Java>>正文


Java ParagraphVectors.fit方法代码示例

本文整理汇总了Java中org.deeplearning4j.models.paragraphvectors.ParagraphVectors.fit方法的典型用法代码示例。如果您正苦于以下问题:Java ParagraphVectors.fit方法的具体用法?Java ParagraphVectors.fit怎么用?Java ParagraphVectors.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.deeplearning4j.models.paragraphvectors.ParagraphVectors的用法示例。


在下文中一共展示了ParagraphVectors.fit方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: trainParagraghVecModel

import org.deeplearning4j.models.paragraphvectors.ParagraphVectors; //导入方法依赖的package包/类
public void trainParagraghVecModel(String locationToSave) throws FileNotFoundException {
    ClassPathResource resource = new ClassPathResource("/paragraphVectors/paragraphVectorTraining.txt");
    File file = resource.getFile();
    SentenceIterator iter = new BasicLineIterator(file);
    AbstractCache<VocabWord> cache = new AbstractCache<VocabWord>();
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());
    /*
         if you don't have LabelAwareIterator handy, you can use synchronized labels generator
          it will be used to label each document/sequence/line with it's own label.
          But if you have LabelAwareIterator ready, you can can provide it, for your in-house labels
    */
    LabelsSource source = new LabelsSource("DOC_");

    ParagraphVectors vec = new ParagraphVectors.Builder()
            .minWordFrequency(1)
            .iterations(100)
            .epochs(1)
            .layerSize(50)
            .learningRate(0.02)
            .labelsSource(source)
            .windowSize(5)
            .iterate(iter)
            .trainWordVectors(true)
            .vocabCache(cache)
            .tokenizerFactory(t)
            .sampling(0)
            .build();

    vec.fit();

    WordVectorSerializer.writeParagraphVectors(vec, locationToSave);
}
 
开发者ID:gizemsogancioglu,项目名称:biosses,代码行数:34,代码来源:SentenceVectorsBasedSimilarity.java

示例2: main

import org.deeplearning4j.models.paragraphvectors.ParagraphVectors; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
    ClassPathResource srcFile = new ClassPathResource("/raw_sentences.txt");
    File file = srcFile.getFile();
    SentenceIterator iter = new BasicLineIterator(file);
    
    TokenizerFactory tFact = new DefaultTokenizerFactory();
    tFact.setTokenPreProcessor(new CommonPreprocessor());

    LabelsSource labelFormat = new LabelsSource("LINE_");

    ParagraphVectors vec = new ParagraphVectors.Builder()
            .minWordFrequency(1)
            .iterations(5)
            .epochs(1)
            .layerSize(100)
            .learningRate(0.025)
            .labelsSource(labelFormat)
            .windowSize(5)
            .iterate(iter)
            .trainWordVectors(false)
            .tokenizerFactory(tFact)
            .sampling(0)
            .build();

    vec.fit();

    double similar1 = vec.similarity("LINE_9835", "LINE_12492");
    out.println("Comparing lines 9836 & 12493 ('This is my house .'/'This is my world .') Similarity = " + similar1);


    double similar2 = vec.similarity("LINE_3720", "LINE_16392");
    out.println("Comparing lines 3721 & 16393 ('This is my way .'/'This is my work .') Similarity = " + similar2);

    double similar3 = vec.similarity("LINE_6347", "LINE_3720");
    out.println("Comparing lines 6348 & 3721 ('This is my case .'/'This is my way .') Similarity = " + similar3);

    double dissimilar1 = vec.similarity("LINE_3720", "LINE_9852");
    out.println("Comparing lines 3721 & 9853 ('This is my way .'/'We now have one .') Similarity = " + dissimilar1);
    
    double dissimilar2 = vec.similarity("LINE_3720", "LINE_3719");
    out.println("Comparing lines 3721 & 3720 ('This is my way .'/'At first he says no .') Similarity = " + dissimilar2);
    
    
    
}
 
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:46,代码来源:ClassifyBySimilarity.java


注:本文中的org.deeplearning4j.models.paragraphvectors.ParagraphVectors.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。