当前位置: 首页>>代码示例>>Java>>正文


Java ClassPathResource.getFile方法代码示例

本文整理汇总了Java中org.datavec.api.util.ClassPathResource.getFile方法的典型用法代码示例。如果您正苦于以下问题:Java ClassPathResource.getFile方法的具体用法?Java ClassPathResource.getFile怎么用?Java ClassPathResource.getFile使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.datavec.api.util.ClassPathResource的用法示例。


在下文中一共展示了ClassPathResource.getFile方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: before

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Before
public void before() throws Exception {
    if (vec == null) {
        ClassPathResource resource = new ClassPathResource("/labeled/");
        File file = resource.getFile();
        SentenceIterator iter = UimaSentenceIterator.createWithPath(file.getAbsolutePath());
        new File("cache.ser").delete();

        TokenizerFactory t = new UimaTokenizerFactory();

        vec = new Word2Vec.Builder().minWordFrequency(1).iterations(5).layerSize(100)
                        .stopWords(new ArrayList<String>()).useUnknown(true).windowSize(5).iterate(iter)
                        .tokenizerFactory(t).build();
        vec.fit();

    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:18,代码来源:Word2VecIteratorTest.java

示例2: testHasNext

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Test
public void testHasNext() throws Exception {

    ClassPathResource reuters5250 = new ClassPathResource("/reuters/5250");
    File f = reuters5250.getFile();

    StreamLineIterator iterator = new StreamLineIterator.Builder(new FileInputStream(f)).setFetchSize(100).build();

    int cnt = 0;
    while (iterator.hasNext()) {
        String line = iterator.nextSentence();

        assertNotEquals(null, line);
        logger.info("Line: " + line);
        cnt++;
    }

    assertEquals(24, cnt);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:20,代码来源:StreamLineIteratorTest.java

示例3: testLoadedIterator1

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Test
public void testLoadedIterator1() throws Exception {
    ClassPathResource resource = new ClassPathResource("/big/raw_sentences.txt");
    File file = resource.getFile();
    BasicLineIterator iterator = new BasicLineIterator(file);

    PrefetchingSentenceIterator fetcher =
                    new PrefetchingSentenceIterator.Builder(iterator).setFetchSize(1000).build();

    log.info("Phase 1 starting");

    int cnt = 0;
    while (fetcher.hasNext()) {
        String line = fetcher.nextSentence();
        // we'll imitate some workload in current thread by using ThreadSleep.
        // there's no need to keep it enabled forever, just uncomment next line if you're going to test this iterator.
        // otherwise this test will

        //    Thread.sleep(0, 10);

        cnt++;
        if (cnt % 10000 == 0)
            log.info("Line processed: " + cnt);
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:26,代码来源:PrefetchingSentenceIteratorTest.java

示例4: testNextDocument

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
/**
 * Checks actual number of documents retrieved by DocumentIterator
 * @throws Exception
 */
@Test
public void testNextDocument() throws Exception {
    ClassPathResource reuters5250 = new ClassPathResource("/reuters/5250");
    File f = reuters5250.getFile();

    DocumentIterator iter = new FileDocumentIterator(f.getAbsolutePath());

    log.info(f.getAbsolutePath());

    int cnt = 0;
    while (iter.hasNext()) {
        InputStream stream = iter.nextDocument();
        stream.close();
        cnt++;
    }

    assertEquals(24, cnt);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:23,代码来源:FileDocumentIteratorTest.java

示例5: trainParagraghVecModel

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
public void trainParagraghVecModel(String locationToSave) throws FileNotFoundException {
    ClassPathResource resource = new ClassPathResource("/paragraphVectors/paragraphVectorTraining.txt");
    File file = resource.getFile();
    SentenceIterator iter = new BasicLineIterator(file);
    AbstractCache<VocabWord> cache = new AbstractCache<VocabWord>();
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());
    /*
         if you don't have LabelAwareIterator handy, you can use synchronized labels generator
          it will be used to label each document/sequence/line with it's own label.
          But if you have LabelAwareIterator ready, you can can provide it, for your in-house labels
    */
    LabelsSource source = new LabelsSource("DOC_");

    ParagraphVectors vec = new ParagraphVectors.Builder()
            .minWordFrequency(1)
            .iterations(100)
            .epochs(1)
            .layerSize(50)
            .learningRate(0.02)
            .labelsSource(source)
            .windowSize(5)
            .iterate(iter)
            .trainWordVectors(true)
            .vocabCache(cache)
            .tokenizerFactory(t)
            .sampling(0)
            .build();

    vec.fit();

    WordVectorSerializer.writeParagraphVectors(vec, locationToSave);
}
 
开发者ID:gizemsogancioglu,项目名称:biosses,代码行数:34,代码来源:SentenceVectorsBasedSimilarity.java

示例6: before

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Before
public void before() throws Exception {

    ClassPathResource resource = new ClassPathResource("/raw_sentences.txt");
    File file = resource.getFile();
    iter = new LineSentenceIterator(file);
    iter.setPreProcessor(new SentencePreProcessor() {
        @Override
        public String preProcess(String sentence) {
            return sentence.toLowerCase();
        }
    });

}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:15,代码来源:GloveTest.java

示例7: testPerformance1

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Test
public void testPerformance1() throws Exception {
    ClassPathResource resource = new ClassPathResource("/big/raw_sentences.txt");
    File file = resource.getFile();

    BasicLineIterator iterator = new BasicLineIterator(file);

    PrefetchingSentenceIterator fetcher = new PrefetchingSentenceIterator.Builder(new BasicLineIterator(file))
                    .setFetchSize(500000).build();

    long time01 = System.currentTimeMillis();
    int cnt0 = 0;
    while (iterator.hasNext()) {
        iterator.nextSentence();
        cnt0++;
    }
    long time02 = System.currentTimeMillis();

    long time11 = System.currentTimeMillis();
    int cnt1 = 0;
    while (fetcher.hasNext()) {
        fetcher.nextSentence();
        cnt1++;
    }
    long time12 = System.currentTimeMillis();

    log.info("Basic iterator: " + (time02 - time01));

    log.info("Prefetched iterator: " + (time12 - time11));

    long difference = (time12 - time11) - (time02 - time01);
    log.info("Difference: " + difference);

    // on small corpus time difference can fluctuate a lot
    // but it's still can be used as effectiveness measurement
    assertTrue(difference < 150);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:38,代码来源:PrefetchingSentenceIteratorTest.java

示例8: testUpdateCoords

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Test
@Ignore
public void testUpdateCoords() throws Exception {
    Nd4j.ENFORCE_NUMERICAL_STABILITY = true;
    Nd4j.factory().setDType(DataBuffer.Type.DOUBLE);
    Nd4j.getRandom().setSeed(123);
    BarnesHutTsne b = new BarnesHutTsne.Builder().stopLyingIteration(250).theta(0.5).learningRate(500)
                    .useAdaGrad(false).numDimension(2).build();

    ClassPathResource resource = new ClassPathResource("/mnist2500_X.txt");
    File f = resource.getFile();
    INDArray data = Nd4j.readNumpy(f.getAbsolutePath(), "   ").get(NDArrayIndex.interval(0, 100),
                    NDArrayIndex.interval(0, 784));



    ClassPathResource labels = new ClassPathResource("mnist2500_labels.txt");
    List<String> labelsList = IOUtils.readLines(labels.getInputStream()).subList(0, 100);
    b.fit(data);
    b.saveAsFile(labelsList, "coords.csv");
    //        String coords =  client.target("http://localhost:8080").path("api").path("update")
    //                .request().accept(MediaType.APPLICATION_JSON)
    ////                .post(Entity.entity(new UrlResource("http://localhost:8080/api/coords.csv"), MediaType.APPLICATION_JSON))
    //                .readEntity(String.class);
    //        ObjectMapper mapper = new ObjectMapper();
    //        List<String> testLines = mapper.readValue(coords,List.class);
    //        List<String> lines = IOUtils.readLines(new FileInputStream("coords.csv"));
    //        assertEquals(testLines,lines);

    throw new RuntimeException("Not implemented");
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:32,代码来源:ApiTest.java

示例9: main

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
    ClassPathResource srcFile = new ClassPathResource("/raw_sentences.txt");
    File file = srcFile.getFile();
    SentenceIterator iter = new BasicLineIterator(file);
    
    TokenizerFactory tFact = new DefaultTokenizerFactory();
    tFact.setTokenPreProcessor(new CommonPreprocessor());

    LabelsSource labelFormat = new LabelsSource("LINE_");

    ParagraphVectors vec = new ParagraphVectors.Builder()
            .minWordFrequency(1)
            .iterations(5)
            .epochs(1)
            .layerSize(100)
            .learningRate(0.025)
            .labelsSource(labelFormat)
            .windowSize(5)
            .iterate(iter)
            .trainWordVectors(false)
            .tokenizerFactory(tFact)
            .sampling(0)
            .build();

    vec.fit();

    double similar1 = vec.similarity("LINE_9835", "LINE_12492");
    out.println("Comparing lines 9836 & 12493 ('This is my house .'/'This is my world .') Similarity = " + similar1);


    double similar2 = vec.similarity("LINE_3720", "LINE_16392");
    out.println("Comparing lines 3721 & 16393 ('This is my way .'/'This is my work .') Similarity = " + similar2);

    double similar3 = vec.similarity("LINE_6347", "LINE_3720");
    out.println("Comparing lines 6348 & 3721 ('This is my case .'/'This is my way .') Similarity = " + similar3);

    double dissimilar1 = vec.similarity("LINE_3720", "LINE_9852");
    out.println("Comparing lines 3721 & 9853 ('This is my way .'/'We now have one .') Similarity = " + dissimilar1);
    
    double dissimilar2 = vec.similarity("LINE_3720", "LINE_3719");
    out.println("Comparing lines 3721 & 3720 ('This is my way .'/'At first he says no .') Similarity = " + dissimilar2);
    
    
    
}
 
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:46,代码来源:ClassifyBySimilarity.java

示例10: testParagraphVectorsVocabBuilding1

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
/**
 * This test checks, how vocab is built using SentenceIterator provided, without labels.
 *
 * @throws Exception
 */
@Test
public void testParagraphVectorsVocabBuilding1() throws Exception {
    ClassPathResource resource = new ClassPathResource("/big/raw_sentences.txt");
    File file = resource.getFile();//.getParentFile();
    SentenceIterator iter = new BasicLineIterator(file); //UimaSentenceIterator.createWithPath(file.getAbsolutePath());

    int numberOfLines = 0;
    while (iter.hasNext()) {
        iter.nextSentence();
        numberOfLines++;
    }

    iter.reset();

    InMemoryLookupCache cache = new InMemoryLookupCache(false);

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    // LabelsSource source = new LabelsSource("DOC_");

    ParagraphVectors vec = new ParagraphVectors.Builder().minWordFrequency(1).iterations(5).layerSize(100)
                    //      .labelsGenerator(source)
                    .windowSize(5).iterate(iter).vocabCache(cache).tokenizerFactory(t).build();

    vec.buildVocab();

    LabelsSource source = vec.getLabelsSource();


    //VocabCache cache = vec.getVocab();
    log.info("Number of lines in corpus: " + numberOfLines);
    assertEquals(numberOfLines, source.getLabels().size());
    assertEquals(97162, source.getLabels().size());

    assertNotEquals(null, cache);
    assertEquals(97406, cache.numWords());

    // proper number of words for minWordsFrequency = 1 is 244
    assertEquals(244, cache.numWords() - source.getLabels().size());
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:47,代码来源:ParagraphVectorsTest.java

示例11: testParagraphVectorsDM

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Test
public void testParagraphVectorsDM() throws Exception {
    ClassPathResource resource = new ClassPathResource("/big/raw_sentences.txt");
    File file = resource.getFile();
    SentenceIterator iter = new BasicLineIterator(file);

    AbstractCache<VocabWord> cache = new AbstractCache.Builder<VocabWord>().build();

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    LabelsSource source = new LabelsSource("DOC_");

    ParagraphVectors vec = new ParagraphVectors.Builder().minWordFrequency(1).iterations(2).seed(119).epochs(3)
                    .layerSize(100).learningRate(0.025).labelsSource(source).windowSize(5).iterate(iter)
                    .trainWordVectors(true).vocabCache(cache).tokenizerFactory(t).negativeSample(0)
                    .useHierarchicSoftmax(true).sampling(0).workers(1).usePreciseWeightInit(true)
                    .sequenceLearningAlgorithm(new DM<VocabWord>()).build();

    vec.fit();


    int cnt1 = cache.wordFrequency("day");
    int cnt2 = cache.wordFrequency("me");

    assertNotEquals(1, cnt1);
    assertNotEquals(1, cnt2);
    assertNotEquals(cnt1, cnt2);

    double simDN = vec.similarity("day", "night");
    log.info("day/night similariry: {}", simDN);

    double similarity1 = vec.similarity("DOC_9835", "DOC_12492");
    log.info("9835/12492 similarity: " + similarity1);
    //        assertTrue(similarity1 > 0.2d);

    double similarity2 = vec.similarity("DOC_3720", "DOC_16392");
    log.info("3720/16392 similarity: " + similarity2);
    //      assertTrue(similarity2 > 0.2d);

    double similarity3 = vec.similarity("DOC_6347", "DOC_3720");
    log.info("6347/3720 similarity: " + similarity3);
    //        assertTrue(similarity3 > 0.6d);

    double similarityX = vec.similarity("DOC_3720", "DOC_9852");
    log.info("3720/9852 similarity: " + similarityX);
    assertTrue(similarityX < 0.5d);


    // testing DM inference now

    INDArray original = vec.getWordVectorMatrix("DOC_16392").dup();
    INDArray inferredA1 = vec.inferVector("This is my work");
    INDArray inferredB1 = vec.inferVector("This is my work .");

    double cosAO1 = Transforms.cosineSim(inferredA1.dup(), original.dup());
    double cosAB1 = Transforms.cosineSim(inferredA1.dup(), inferredB1.dup());

    log.info("Cos O/A: {}", cosAO1);
    log.info("Cos A/B: {}", cosAB1);

}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:63,代码来源:ParagraphVectorsTest.java

示例12: testParagraphVectorsDBOW

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Test
public void testParagraphVectorsDBOW() throws Exception {
    ClassPathResource resource = new ClassPathResource("/big/raw_sentences.txt");
    File file = resource.getFile();
    SentenceIterator iter = new BasicLineIterator(file);

    AbstractCache<VocabWord> cache = new AbstractCache.Builder<VocabWord>().build();

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    LabelsSource source = new LabelsSource("DOC_");

    ParagraphVectors vec = new ParagraphVectors.Builder().minWordFrequency(1).iterations(5).seed(119).epochs(1)
                    .layerSize(100).learningRate(0.025).labelsSource(source).windowSize(5).iterate(iter)
                    .trainWordVectors(true).vocabCache(cache).tokenizerFactory(t).negativeSample(0)
                    .allowParallelTokenization(true).useHierarchicSoftmax(true).sampling(0).workers(2)
                    .usePreciseWeightInit(true).sequenceLearningAlgorithm(new DBOW<VocabWord>()).build();

    vec.fit();


    int cnt1 = cache.wordFrequency("day");
    int cnt2 = cache.wordFrequency("me");

    assertNotEquals(1, cnt1);
    assertNotEquals(1, cnt2);
    assertNotEquals(cnt1, cnt2);

    double simDN = vec.similarity("day", "night");
    log.info("day/night similariry: {}", simDN);

    double similarity1 = vec.similarity("DOC_9835", "DOC_12492");
    log.info("9835/12492 similarity: " + similarity1);
    //        assertTrue(similarity1 > 0.2d);

    double similarity2 = vec.similarity("DOC_3720", "DOC_16392");
    log.info("3720/16392 similarity: " + similarity2);
    //      assertTrue(similarity2 > 0.2d);

    double similarity3 = vec.similarity("DOC_6347", "DOC_3720");
    log.info("6347/3720 similarity: " + similarity3);
    //        assertTrue(similarity3 > 0.6d);

    double similarityX = vec.similarity("DOC_3720", "DOC_9852");
    log.info("3720/9852 similarity: " + similarityX);
    assertTrue(similarityX < 0.5d);


    // testing DM inference now

    INDArray original = vec.getWordVectorMatrix("DOC_16392").dup();
    INDArray inferredA1 = vec.inferVector("This is my work");
    INDArray inferredB1 = vec.inferVector("This is my work .");
    INDArray inferredC1 = vec.inferVector("This is my day");
    INDArray inferredD1 = vec.inferVector("This is my night");

    log.info("A: {}", Arrays.toString(inferredA1.data().asFloat()));
    log.info("C: {}", Arrays.toString(inferredC1.data().asFloat()));

    assertNotEquals(inferredA1, inferredC1);

    double cosAO1 = Transforms.cosineSim(inferredA1.dup(), original.dup());
    double cosAB1 = Transforms.cosineSim(inferredA1.dup(), inferredB1.dup());
    double cosAC1 = Transforms.cosineSim(inferredA1.dup(), inferredC1.dup());
    double cosCD1 = Transforms.cosineSim(inferredD1.dup(), inferredC1.dup());

    log.info("Cos O/A: {}", cosAO1);
    log.info("Cos A/B: {}", cosAB1);
    log.info("Cos A/C: {}", cosAC1);
    log.info("Cos C/D: {}", cosCD1);

}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:74,代码来源:ParagraphVectorsTest.java

示例13: testParagraphVectorsWithWordVectorsModelling1

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Test
public void testParagraphVectorsWithWordVectorsModelling1() throws Exception {
    ClassPathResource resource = new ClassPathResource("/big/raw_sentences.txt");
    File file = resource.getFile();
    SentenceIterator iter = new BasicLineIterator(file);

    //        InMemoryLookupCache cache = new InMemoryLookupCache(false);
    AbstractCache<VocabWord> cache = new AbstractCache.Builder<VocabWord>().build();

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    LabelsSource source = new LabelsSource("DOC_");

    ParagraphVectors vec = new ParagraphVectors.Builder().minWordFrequency(1).iterations(3).epochs(1).layerSize(100)
                    .learningRate(0.025).labelsSource(source).windowSize(5).iterate(iter).trainWordVectors(true)
                    .vocabCache(cache).tokenizerFactory(t).sampling(0).build();

    vec.fit();


    int cnt1 = cache.wordFrequency("day");
    int cnt2 = cache.wordFrequency("me");

    assertNotEquals(1, cnt1);
    assertNotEquals(1, cnt2);
    assertNotEquals(cnt1, cnt2);

    /*
        We have few lines that contain pretty close words invloved.
        These sentences should be pretty close to each other in vector space
     */
    // line 3721: This is my way .
    // line 6348: This is my case .
    // line 9836: This is my house .
    // line 12493: This is my world .
    // line 16393: This is my work .

    // this is special sentence, that has nothing common with previous sentences
    // line 9853: We now have one .

    assertTrue(vec.hasWord("DOC_3720"));

    double similarityD = vec.similarity("day", "night");
    log.info("day/night similarity: " + similarityD);

    double similarityW = vec.similarity("way", "work");
    log.info("way/work similarity: " + similarityW);

    double similarityH = vec.similarity("house", "world");
    log.info("house/world similarity: " + similarityH);

    double similarityC = vec.similarity("case", "way");
    log.info("case/way similarity: " + similarityC);

    double similarity1 = vec.similarity("DOC_9835", "DOC_12492");
    log.info("9835/12492 similarity: " + similarity1);
    //        assertTrue(similarity1 > 0.7d);

    double similarity2 = vec.similarity("DOC_3720", "DOC_16392");
    log.info("3720/16392 similarity: " + similarity2);
    //        assertTrue(similarity2 > 0.7d);

    double similarity3 = vec.similarity("DOC_6347", "DOC_3720");
    log.info("6347/3720 similarity: " + similarity3);
    //        assertTrue(similarity2 > 0.7d);

    // likelihood in this case should be significantly lower
    // however, since corpus is small, and weight initialization is random-based, sometimes this test CAN fail
    double similarityX = vec.similarity("DOC_3720", "DOC_9852");
    log.info("3720/9852 similarity: " + similarityX);
    assertTrue(similarityX < 0.5d);


    double sim119 = vec.similarityToLabel("This is my case .", "DOC_6347");
    double sim120 = vec.similarityToLabel("This is my case .", "DOC_3720");
    log.info("1/2: " + sim119 + "/" + sim120);
    //assertEquals(similarity3, sim119, 0.001);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:80,代码来源:ParagraphVectorsTest.java

示例14: testGlove1

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Ignore
@Test
public void testGlove1() throws Exception {
    logger.info("Max available memory: " + Runtime.getRuntime().maxMemory());
    ClassPathResource resource = new ClassPathResource("big/raw_sentences.txt");
    File file = resource.getFile();

    BasicLineIterator underlyingIterator = new BasicLineIterator(file);

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    SentenceTransformer transformer =
                    new SentenceTransformer.Builder().iterator(underlyingIterator).tokenizerFactory(t).build();

    AbstractSequenceIterator<VocabWord> sequenceIterator =
                    new AbstractSequenceIterator.Builder<>(transformer).build();

    VectorsConfiguration configuration = new VectorsConfiguration();
    configuration.setWindow(5);
    configuration.setLearningRate(0.06);
    configuration.setLayersSize(100);


    SequenceVectors<VocabWord> vectors = new SequenceVectors.Builder<VocabWord>(configuration)
                    .iterate(sequenceIterator).iterations(1).epochs(45)
                    .elementsLearningAlgorithm(new GloVe.Builder<VocabWord>().shuffle(true).symmetric(true)
                                    .learningRate(0.05).alpha(0.75).xMax(100.0).build())
                    .resetModel(true).trainElementsRepresentation(true).trainSequencesRepresentation(false).build();

    vectors.fit();

    double sim = vectors.similarity("day", "night");
    logger.info("Day/night similarity: " + sim);


    sim = vectors.similarity("day", "another");
    logger.info("Day/another similarity: " + sim);

    sim = vectors.similarity("night", "year");
    logger.info("Night/year similarity: " + sim);

    sim = vectors.similarity("night", "me");
    logger.info("Night/me similarity: " + sim);

    sim = vectors.similarity("day", "know");
    logger.info("Day/know similarity: " + sim);

    sim = vectors.similarity("best", "police");
    logger.info("Best/police similarity: " + sim);

    Collection<String> labels = vectors.wordsNearest("day", 10);
    logger.info("Nearest labels to 'day': " + labels);


    sim = vectors.similarity("day", "night");
    assertTrue(sim > 0.6d);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:59,代码来源:SequenceVectorsTest.java

示例15: testDocumentIterator

import org.datavec.api.util.ClassPathResource; //导入方法依赖的package包/类
@Test
public void testDocumentIterator() throws Exception {
    ClassPathResource reuters5250 = new ClassPathResource("/reuters/5250");
    File f = reuters5250.getFile();

    DocumentIterator iter = new FileDocumentIterator(f.getAbsolutePath());

    InputStream doc = iter.nextDocument();

    TokenizerFactory t = new DefaultTokenizerFactory();
    Tokenizer next = t.create(doc);
    String[] list = "PEARSON CONCENTRATES ON FOUR SECTORS".split(" ");
    ///PEARSON CONCENTRATES ON FOUR SECTORS
    int count = 0;
    while (next.hasMoreTokens() && count < list.length) {
        String token = next.nextToken();
        assertEquals(list[count++], token);
    }


    doc.close();



}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:26,代码来源:DefaultDocumentIteratorTest.java


注:本文中的org.datavec.api.util.ClassPathResource.getFile方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。