本文整理汇总了Java中org.cleartk.eval.AnnotationStatistics.annotationToFeatureValue方法的典型用法代码示例。如果您正苦于以下问题:Java AnnotationStatistics.annotationToFeatureValue方法的具体用法?Java AnnotationStatistics.annotationToFeatureValue怎么用?Java AnnotationStatistics.annotationToFeatureValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.cleartk.eval.AnnotationStatistics
的用法示例。
在下文中一共展示了AnnotationStatistics.annotationToFeatureValue方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: ModelInfo
import org.cleartk.eval.AnnotationStatistics; //导入方法依赖的package包/类
public ModelInfo(
Class<ANNOTATION_TYPE> annotatedClass,
String annotatedFeatureName,
Function<ANNOTATION_TYPE, ? extends Object> getSpan,
CleartkInternalModelFactory modelFactory,
String[] trainingArguments) {
this.annotatedClass = annotatedClass;
this.annotatedFeatureName = annotatedFeatureName;
this.getSpan = getSpan;
if (this.annotatedFeatureName == null) {
this.getOutcome = AnnotationStatistics.annotationToNull();
} else {
this.getOutcome = AnnotationStatistics.annotationToFeatureValue(this.annotatedFeatureName);
}
this.modelFactory = modelFactory;
this.trainingArguments = trainingArguments;
}
示例2: test
import org.cleartk.eval.AnnotationStatistics; //导入方法依赖的package包/类
@Override
protected AnnotationStatistics<String> test(CollectionReader collectionReader, File directory)
throws Exception {
AnnotationStatistics<String> stats = new AnnotationStatistics<String>();
// Create the document classification pipeline
AggregateBuilder builder = DocumentClassificationEvaluation.createDocumentClassificationAggregate(
directory,
AnnotatorMode.TEST);
AnalysisEngine engine = builder.createAggregate();
// Run and evaluate
Function<UsenetDocument, ?> getSpan = AnnotationStatistics.annotationToSpan();
Function<UsenetDocument, String> getCategory = AnnotationStatistics.annotationToFeatureValue("category");
JCasIterator iter = new JCasIterator(collectionReader, engine);
while (iter.hasNext()) {
JCas jCas = iter.next();
JCas goldView = jCas.getView(GOLD_VIEW_NAME);
JCas systemView = jCas.getView(DocumentClassificationEvaluation.SYSTEM_VIEW_NAME);
// Get results from system and gold views, and update results accordingly
Collection<UsenetDocument> goldCategories = JCasUtil.select(goldView, UsenetDocument.class);
Collection<UsenetDocument> systemCategories = JCasUtil.select(
systemView,
UsenetDocument.class);
stats.add(goldCategories, systemCategories, getSpan, getCategory);
}
return stats;
}
示例3: test
import org.cleartk.eval.AnnotationStatistics; //导入方法依赖的package包/类
@Override
protected AnnotationStatistics<String> test(CollectionReader collectionReader, File directory) throws Exception {
AnnotationStatistics<String> stats = new AnnotationStatistics<String>();
AggregateBuilder builder = new AggregateBuilder();
final String defaultViewName = CAS.NAME_DEFAULT_SOFA;
final String goldViewName = "GoldView";
builder.add(AnalysisEngineFactory.createEngineDescription(ViewCreatorAnnotator.class,
ViewCreatorAnnotator.PARAM_VIEW_NAME, goldViewName));
builder.add(UriToDocumentTextAnnotator.getDescription(), defaultViewName, goldViewName);
builder.add(AnalysisEngineFactory.createEngineDescription(GoldQuestionCategoryAnnotator.class), defaultViewName,
goldViewName);
builder.add(UriToDocumentTextAnnotator.getDescription());
builder.add(SentenceAnnotator.getDescription());
builder.add(TokenAnnotator.getDescription());
builder.add(PosTaggerAnnotator.getDescription());
builder.add(DefaultSnowballStemmer.getDescription("English"));
AnalysisEngineDescription documentClassificationAnnotator = AnalysisEngineFactory.createEngineDescription(
QuestionCategoryAnnotator.class, CleartkAnnotator.PARAM_IS_TRAINING, false,
GenericJarClassifierFactory.PARAM_CLASSIFIER_JAR_PATH, JarClassifierBuilder.getModelJarFile(directory));
builder.add(documentClassificationAnnotator);
AnalysisEngine engine = builder.createAggregate();
// Run and evaluate
Function<QuestionCategoryAnnotation, ?> getSpan = AnnotationStatistics.annotationToSpan();
Function<QuestionCategoryAnnotation, String> getCategory =
AnnotationStatistics.annotationToFeatureValue("category");
JCasIterator iter = new JCasIterator(collectionReader, engine);
while (iter.hasNext()) {
JCas jCas = iter.next();
JCas goldView = jCas.getView(goldViewName);
JCas systemView = jCas.getView(defaultViewName);
// Get results from system and gold views, and update results accordingly
Collection<QuestionCategoryAnnotation> goldCategories =
JCasUtil.select(goldView, QuestionCategoryAnnotation.class);
Collection<QuestionCategoryAnnotation> systemCategories =
JCasUtil.select(systemView, QuestionCategoryAnnotation.class);
stats.add(goldCategories, systemCategories, getSpan, getCategory);
}
return stats;
}
示例4: test
import org.cleartk.eval.AnnotationStatistics; //导入方法依赖的package包/类
@Override
protected AnnotationStatistics<String> test(CollectionReader collectionReader, File modelDirectory)
throws Exception {
final String defaultViewName = CAS.NAME_DEFAULT_SOFA;
final String goldViewName = "GoldView";
// define the pipeline
AggregateBuilder aggregate = new AggregateBuilder();
// Annotators processing the gold view:
// * create the gold view
// * load the text
// * load the MASC annotations
aggregate.add(AnalysisEngineFactory.createEngineDescription(
ViewCreatorAnnotator.class,
ViewCreatorAnnotator.PARAM_VIEW_NAME,
goldViewName));
aggregate.add(UriToDocumentTextAnnotator.getDescription(), defaultViewName, goldViewName);
aggregate.add(MascGoldAnnotator.getDescription(), defaultViewName, goldViewName);
// Annotators processing the default (system) view:
// * load the text
// * parse sentences, tokens, part-of-speech tags
// * run the named entity chunker
aggregate.add(UriToDocumentTextAnnotator.getDescription());
aggregate.add(SentenceAnnotator.getDescription());
aggregate.add(TokenAnnotator.getDescription());
aggregate.add(PosTaggerAnnotator.getDescription());
aggregate.add(AnalysisEngineFactory.createEngineDescription(
NamedEntityChunker.class,
CleartkSequenceAnnotator.PARAM_IS_TRAINING,
false,
GenericJarClassifierFactory.PARAM_CLASSIFIER_JAR_PATH,
JarClassifierBuilder.getModelJarFile(modelDirectory)));
// prepare the evaluation statistics
AnnotationStatistics<String> stats = new AnnotationStatistics<String>();
Function<NamedEntityMention, ?> getSpan = AnnotationStatistics.annotationToSpan();
Function<NamedEntityMention, String> getCategory = AnnotationStatistics.annotationToFeatureValue("mentionType");
// iterate over each JCas to be evaluated
JCasIterator iter = new JCasIterator(collectionReader, aggregate.createAggregate());
while (iter.hasNext()) {
JCas jCas = iter.next();
JCas goldView = jCas.getView(goldViewName);
JCas systemView = jCas.getView(defaultViewName);
// extract the named entity mentions from both gold and system views
Collection<NamedEntityMention> goldMentions, systemMentions;
goldMentions = JCasUtil.select(goldView, NamedEntityMention.class);
systemMentions = JCasUtil.select(systemView, NamedEntityMention.class);
// compare the system mentions to the gold mentions
stats.add(goldMentions, systemMentions, getSpan, getCategory);
}
return stats;
}