本文整理汇总了Java中org.bouncycastle.math.ec.ECFieldElement.square方法的典型用法代码示例。如果您正苦于以下问题:Java ECFieldElement.square方法的具体用法?Java ECFieldElement.square怎么用?Java ECFieldElement.square使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.bouncycastle.math.ec.ECFieldElement
的用法示例。
在下文中一共展示了ECFieldElement.square方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: findBetaValues
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
private static ECFieldElement[] findBetaValues(ECCurve c)
{
BigInteger q = c.getField().getCharacteristic();
BigInteger e = q.divide(ECConstants.THREE);
// Search for a random value that generates a non-trival cube root of 1
SecureRandom random = new SecureRandom();
BigInteger b;
do
{
BigInteger r = BigIntegers.createRandomInRange(ECConstants.TWO, q.subtract(ECConstants.TWO), random);
b = r.modPow(e, q);
}
while (b.equals(ECConstants.ONE));
ECFieldElement beta = c.fromBigInteger(b);
return new ECFieldElement[]{ beta, beta.square() };
}
示例2: solveQuadradicEquation
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
/**
* Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
* D.1.6) The other solution is <code>z + 1</code>.
*
* @param beta The value to solve the qradratic equation for.
* @return the solution for <code>z<sup>2</sup> + z = beta</code> or
* <code>null</code> if no solution exists.
*/
private static ECFieldElement solveQuadradicEquation(ECFieldElement beta)
{
ECFieldElement.F2m b = (ECFieldElement.F2m)beta;
ECFieldElement zeroElement = new ECFieldElement.F2m(
b.getM(), b.getK1(), b.getK2(), b.getK3(), ECConstants.ZERO);
if (beta.toBigInteger().equals(ECConstants.ZERO))
{
return zeroElement;
}
ECFieldElement z = null;
ECFieldElement gamma = zeroElement;
Random rand = new Random();
int m = b.getM();
do
{
ECFieldElement t = new ECFieldElement.F2m(b.getM(), b.getK1(),
b.getK2(), b.getK3(), new BigInteger(m, rand));
z = zeroElement;
ECFieldElement w = beta;
for (int i = 1; i <= m - 1; i++)
{
ECFieldElement w2 = w.square();
z = z.square().add(w2.multiply(t));
w = w2.add(beta);
}
if (!w.toBigInteger().equals(ECConstants.ZERO))
{
return null;
}
gamma = z.square().add(z);
}
while (gamma.toBigInteger().equals(ECConstants.ZERO));
return z;
}
示例3: twice
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return curve.getInfinity();
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
boolean Z1IsOne = Z1.isOne();
ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.multiply(Z1);
ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square();
ECFieldElement a = curve.getA();
ECFieldElement aZ1Sq = Z1IsOne ? a : a.multiply(Z1Sq);
ECFieldElement T = L1.square().add(L1Z1).add(aZ1Sq);
if (T.isZero())
{
return new SecT113R1Point(curve, T, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = T.square();
ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq);
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.multiply(Z1);
ECFieldElement L3 = X1Z1.squarePlusProduct(T, L1Z1).add(X3).add(Z3);
return new SecT113R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例4: twice
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return curve.getInfinity();
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
boolean Z1IsOne = Z1.isOne();
ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.multiply(Z1);
ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square();
ECFieldElement a = curve.getA();
ECFieldElement aZ1Sq = Z1IsOne ? a : a.multiply(Z1Sq);
ECFieldElement T = L1.square().add(L1Z1).add(aZ1Sq);
if (T.isZero())
{
return new SecT193R1Point(curve, T, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = T.square();
ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq);
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.multiply(Z1);
ECFieldElement L3 = X1Z1.squarePlusProduct(T, L1Z1).add(X3).add(Z3);
return new SecT193R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例5: twice
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return curve.getInfinity();
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
boolean Z1IsOne = Z1.isOne();
ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.multiply(Z1);
ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square();
ECFieldElement a = curve.getA();
ECFieldElement aZ1Sq = Z1IsOne ? a : a.multiply(Z1Sq);
ECFieldElement T = L1.square().add(L1Z1).add(aZ1Sq);
if (T.isZero())
{
return new SecT131R1Point(curve, T, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = T.square();
ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq);
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.multiply(Z1);
ECFieldElement L3 = X1Z1.squarePlusProduct(T, L1Z1).add(X3).add(Z3);
return new SecT131R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例6: twice
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return curve.getInfinity();
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
boolean Z1IsOne = Z1.isOne();
ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.multiply(Z1);
ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square();
ECFieldElement a = curve.getA();
ECFieldElement aZ1Sq = Z1IsOne ? a : a.multiply(Z1Sq);
ECFieldElement T = L1.square().add(L1Z1).add(aZ1Sq);
if (T.isZero())
{
return new SecT113R2Point(curve, T, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = T.square();
ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq);
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.multiply(Z1);
ECFieldElement L3 = X1Z1.squarePlusProduct(T, L1Z1).add(X3).add(Z3);
return new SecT113R2Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例7: twice
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return curve.getInfinity();
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
boolean Z1IsOne = Z1.isOne();
ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.multiply(Z1);
ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square();
ECFieldElement a = curve.getA();
ECFieldElement aZ1Sq = Z1IsOne ? a : a.multiply(Z1Sq);
ECFieldElement T = L1.square().add(L1Z1).add(aZ1Sq);
if (T.isZero())
{
return new SecT193R2Point(curve, T, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = T.square();
ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq);
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.multiply(Z1);
ECFieldElement L3 = X1Z1.squarePlusProduct(T, L1Z1).add(X3).add(Z3);
return new SecT193R2Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例8: twice
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return curve.getInfinity();
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
boolean Z1IsOne = Z1.isOne();
ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.multiply(Z1);
ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square();
ECFieldElement T = L1.square().add(L1Z1).add(Z1Sq);
if (T.isZero())
{
return new SecT233R1Point(curve, T, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = T.square();
ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq);
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.multiply(Z1);
ECFieldElement L3 = X1Z1.squarePlusProduct(T, L1Z1).add(X3).add(Z3);
return new SecT233R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例9: twice
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return curve.getInfinity();
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
boolean Z1IsOne = Z1.isOne();
ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.multiply(Z1);
ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square();
ECFieldElement T = L1.square().add(L1Z1).add(Z1Sq);
if (T.isZero())
{
// return new SecT571R1Point(curve, T, curve.getB().sqrt(), withCompression);
return new SecT571R1Point(curve, T, SecT571R1Curve.SecT571R1_B_SQRT, withCompression);
}
ECFieldElement X3 = T.square();
ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq);
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.multiply(Z1);
ECFieldElement L3 = X1Z1.squarePlusProduct(T, L1Z1).add(X3).add(Z3);
return new SecT571R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例10: decodePoint
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public static ECPoint decodePoint(ECCurve curve, byte[] bytes)
{
/*byte[] bp_enc=new byte[bytes.length+1];
if (0==(bytes[bytes.length-1]&0x1))
bp_enc[0]=0x02;
else
bp_enc[0]=0x03;
System.arraycopy(bytes, 0, bp_enc, 1, bytes.length);
if (!trace(curve.fromBigInteger(new BigInteger(1, bytes))).equals(curve.getA().toBigInteger()))
bp_enc[bp_enc.length-1]^=0x01;
return curve.decodePoint(bp_enc);*/
BigInteger k = BigInteger.valueOf(bytes[bytes.length - 1] & 0x1);
if (!trace(curve.fromBigInteger(new BigInteger(1, bytes))).equals(curve.getA().toBigInteger()))
{
bytes = Arrays.clone(bytes);
bytes[bytes.length - 1] ^= 0x01;
}
ECCurve.F2m c = (ECCurve.F2m)curve;
ECFieldElement xp = curve.fromBigInteger(new BigInteger(1, bytes));
ECFieldElement yp = null;
if (xp.toBigInteger().equals(ECConstants.ZERO))
{
yp = (ECFieldElement.F2m)curve.getB();
for (int i = 0; i < c.getM() - 1; i++)
{
yp = yp.square();
}
}
else
{
ECFieldElement beta = xp.add(curve.getA()).add(
curve.getB().multiply(xp.square().invert()));
ECFieldElement z = solveQuadradicEquation(beta);
if (z == null)
{
throw new RuntimeException("Invalid point compression");
}
if (!trace(z).equals(k))
{
z = z.add(curve.fromBigInteger(ECConstants.ONE));
}
yp = xp.multiply(z);
}
return new ECPoint.F2m(curve, xp, yp);
}
示例11: twicePlus
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twicePlus(ECPoint b)
{
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return twice();
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return b;
}
ECFieldElement X2 = b.getRawXCoord(), Z2 = b.getZCoord(0);
if (X2.isZero() || !Z2.isOne())
{
return twice().add(b);
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
ECFieldElement L2 = b.getRawYCoord();
ECFieldElement X1Sq = X1.square();
ECFieldElement L1Sq = L1.square();
ECFieldElement Z1Sq = Z1.square();
ECFieldElement L1Z1 = L1.multiply(Z1);
// ECFieldElement T = curve.getA().multiply(Z1Sq).add(L1Sq).add(L1Z1);
ECFieldElement T = Z1Sq.add(L1Sq).add(L1Z1);
ECFieldElement L2plus1 = L2.addOne();
// ECFieldElement A = curve.getA().add(L2plus1).multiply(Z1Sq).add(L1Sq).multiplyPlusProduct(T, X1Sq, Z1Sq);
ECFieldElement A = L2.multiply(Z1Sq).add(L1Sq).multiplyPlusProduct(T, X1Sq, Z1Sq);
ECFieldElement X2Z1Sq = X2.multiply(Z1Sq);
ECFieldElement B = X2Z1Sq.add(T).square();
if (B.isZero())
{
if (A.isZero())
{
return b.twice();
}
return curve.getInfinity();
}
if (A.isZero())
{
return new SecT283R1Point(curve, A, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = A.square().multiply(X2Z1Sq);
ECFieldElement Z3 = A.multiply(B).multiply(Z1Sq);
ECFieldElement L3 = A.add(B).square().multiplyPlusProduct(T, L2plus1, Z3);
return new SecT283R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例12: twicePlus
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twicePlus(ECPoint b)
{
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return twice();
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return b;
}
ECFieldElement X2 = b.getRawXCoord(), Z2 = b.getZCoord(0);
if (X2.isZero() || !Z2.isOne())
{
return twice().add(b);
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
ECFieldElement L2 = b.getRawYCoord();
ECFieldElement X1Sq = X1.square();
ECFieldElement L1Sq = L1.square();
ECFieldElement Z1Sq = Z1.square();
ECFieldElement L1Z1 = L1.multiply(Z1);
ECFieldElement T = curve.getA().multiply(Z1Sq).add(L1Sq).add(L1Z1);
ECFieldElement L2plus1 = L2.addOne();
ECFieldElement A = curve.getA().add(L2plus1).multiply(Z1Sq).add(L1Sq).multiplyPlusProduct(T, X1Sq, Z1Sq);
ECFieldElement X2Z1Sq = X2.multiply(Z1Sq);
ECFieldElement B = X2Z1Sq.add(T).square();
if (B.isZero())
{
if (A.isZero())
{
return b.twice();
}
return curve.getInfinity();
}
if (A.isZero())
{
return new SecT131R2Point(curve, A, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = A.square().multiply(X2Z1Sq);
ECFieldElement Z3 = A.multiply(B).multiply(Z1Sq);
ECFieldElement L3 = A.add(B).square().multiplyPlusProduct(T, L2plus1, Z3);
return new SecT131R2Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例13: twicePlus
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twicePlus(ECPoint b)
{
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return twice();
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return b;
}
ECFieldElement X2 = b.getRawXCoord(), Z2 = b.getZCoord(0);
if (X2.isZero() || !Z2.isOne())
{
return twice().add(b);
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
ECFieldElement L2 = b.getRawYCoord();
ECFieldElement X1Sq = X1.square();
ECFieldElement L1Sq = L1.square();
ECFieldElement Z1Sq = Z1.square();
ECFieldElement L1Z1 = L1.multiply(Z1);
ECFieldElement T = curve.getA().multiply(Z1Sq).add(L1Sq).add(L1Z1);
ECFieldElement L2plus1 = L2.addOne();
ECFieldElement A = curve.getA().add(L2plus1).multiply(Z1Sq).add(L1Sq).multiplyPlusProduct(T, X1Sq, Z1Sq);
ECFieldElement X2Z1Sq = X2.multiply(Z1Sq);
ECFieldElement B = X2Z1Sq.add(T).square();
if (B.isZero())
{
if (A.isZero())
{
return b.twice();
}
return curve.getInfinity();
}
if (A.isZero())
{
return new SecT193R1Point(curve, A, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = A.square().multiply(X2Z1Sq);
ECFieldElement Z3 = A.multiply(B).multiply(Z1Sq);
ECFieldElement L3 = A.add(B).square().multiplyPlusProduct(T, L2plus1, Z3);
return new SecT193R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例14: twicePlus
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twicePlus(ECPoint b)
{
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return twice();
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return b;
}
// NOTE: twicePlus() only optimized for lambda-affine argument
ECFieldElement X2 = b.getRawXCoord(), Z2 = b.getZCoord(0);
if (X2.isZero() || !Z2.isOne())
{
return twice().add(b);
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
ECFieldElement L2 = b.getRawYCoord();
ECFieldElement X1Sq = X1.square();
ECFieldElement L1Sq = L1.square();
ECFieldElement Z1Sq = Z1.square();
ECFieldElement L1Z1 = L1.multiply(Z1);
// ECFieldElement T = curve.getA().multiply(Z1Sq).add(L1Sq).add(L1Z1);
ECFieldElement T = L1Sq.add(L1Z1);
ECFieldElement L2plus1 = L2.addOne();
// ECFieldElement A = curve.getA().add(L2plus1).multiply(Z1Sq).add(L1Sq).multiplyPlusProduct(T, X1Sq, Z1Sq);
ECFieldElement A = L2plus1.multiply(Z1Sq).add(L1Sq).multiplyPlusProduct(T, X1Sq, Z1Sq);
ECFieldElement X2Z1Sq = X2.multiply(Z1Sq);
ECFieldElement B = X2Z1Sq.add(T).square();
if (B.isZero())
{
if (A.isZero())
{
return b.twice();
}
return curve.getInfinity();
}
if (A.isZero())
{
// return new SecT571K1Point(curve, A, curve.getB().sqrt(), withCompression);
return new SecT571K1Point(curve, A, curve.getB(), withCompression);
}
ECFieldElement X3 = A.square().multiply(X2Z1Sq);
ECFieldElement Z3 = A.multiply(B).multiply(Z1Sq);
ECFieldElement L3 = A.add(B).square().multiplyPlusProduct(T, L2plus1, Z3);
return new SecT571K1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}
示例15: twicePlus
import org.bouncycastle.math.ec.ECFieldElement; //导入方法依赖的package包/类
public ECPoint twicePlus(ECPoint b)
{
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return twice();
}
ECCurve curve = this.getCurve();
ECFieldElement X1 = this.x;
if (X1.isZero())
{
// A point with X == 0 is it's own additive inverse
return b;
}
ECFieldElement X2 = b.getRawXCoord(), Z2 = b.getZCoord(0);
if (X2.isZero() || !Z2.isOne())
{
return twice().add(b);
}
ECFieldElement L1 = this.y, Z1 = this.zs[0];
ECFieldElement L2 = b.getRawYCoord();
ECFieldElement X1Sq = X1.square();
ECFieldElement L1Sq = L1.square();
ECFieldElement Z1Sq = Z1.square();
ECFieldElement L1Z1 = L1.multiply(Z1);
ECFieldElement T = curve.getA().multiply(Z1Sq).add(L1Sq).add(L1Z1);
ECFieldElement L2plus1 = L2.addOne();
ECFieldElement A = curve.getA().add(L2plus1).multiply(Z1Sq).add(L1Sq).multiplyPlusProduct(T, X1Sq, Z1Sq);
ECFieldElement X2Z1Sq = X2.multiply(Z1Sq);
ECFieldElement B = X2Z1Sq.add(T).square();
if (B.isZero())
{
if (A.isZero())
{
return b.twice();
}
return curve.getInfinity();
}
if (A.isZero())
{
return new SecT113R2Point(curve, A, curve.getB().sqrt(), withCompression);
}
ECFieldElement X3 = A.square().multiply(X2Z1Sq);
ECFieldElement Z3 = A.multiply(B).multiply(Z1Sq);
ECFieldElement L3 = A.add(B).square().multiplyPlusProduct(T, L2plus1, Z3);
return new SecT113R2Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression);
}