当前位置: 首页>>代码示例>>Java>>正文


Java DataTypes.IntegerType方法代码示例

本文整理汇总了Java中org.apache.spark.sql.types.DataTypes.IntegerType方法的典型用法代码示例。如果您正苦于以下问题:Java DataTypes.IntegerType方法的具体用法?Java DataTypes.IntegerType怎么用?Java DataTypes.IntegerType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.spark.sql.types.DataTypes的用法示例。


在下文中一共展示了DataTypes.IntegerType方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: test_getDataSetResult

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
@Test
public void test_getDataSetResult() {

    StructField[] structFields = new StructField[]{
            new StructField("intColumn", DataTypes.IntegerType, true, Metadata.empty()),
            new StructField("stringColumn", DataTypes.StringType, true, Metadata.empty())
    };

    StructType structType = new StructType(structFields);

    List<Row> rows = new ArrayList<>();
    rows.add(RowFactory.create(1, "v1"));
    rows.add(RowFactory.create(2, "v2"));

    Dataset<Row> df = sparkSession.createDataFrame(rows, structType);

    DataSetResult dataSetResult = SparkUtils.getDataSetResult(df);
    Assert.assertEquals(2, dataSetResult.getColumnNames().size());
    Assert.assertEquals(2, dataSetResult.getRows().size());
    Assert.assertEquals(new Integer(1), dataSetResult.getRows().get(0).get(0));
    Assert.assertEquals("v1", dataSetResult.getRows().get(0).get(1));
    Assert.assertEquals(new Integer(2), dataSetResult.getRows().get(1).get(0));
    Assert.assertEquals("v2", dataSetResult.getRows().get(1).get(1));
}
 
开发者ID:uber,项目名称:uberscriptquery,代码行数:25,代码来源:SparkUtilsTest.java

示例2: generateData_week_timepoints_by_10_minutes

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
private static Dataset<Row> generateData_week_timepoints_by_10_minutes(SparkSession spark) {
    StructField[] structFields = new StructField[1];
    org.apache.spark.sql.types.DataType dataType = DataTypes.IntegerType;
    String column = "timepoint";
    StructField structField = new StructField(column, dataType, true, Metadata.empty());
    structFields[0] = structField;

    StructType structType = new StructType(structFields);

    List<Row> rows = new ArrayList<>();

    int weekTotalMinutes = 7 * 24 * 60;
    int timepointIntervalMinutes = 10;
    for (int i = 0; i < weekTotalMinutes / timepointIntervalMinutes; i++) {
        Object[] objects = new Object[structFields.length];
        objects[0] = i;
        Row row = RowFactory.create(objects);
        rows.add(row);
    }

    Dataset<Row> df = spark.createDataFrame(rows, structType);
    return df;
}
 
开发者ID:uber,项目名称:uberscriptquery,代码行数:24,代码来源:QueryEngine.java

示例3: translateDataType

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
static
public DataType translateDataType(org.dmg.pmml.DataType dataType){

	switch(dataType){
		case STRING:
			return DataTypes.StringType;
		case INTEGER:
			return DataTypes.IntegerType;
		case FLOAT:
			return DataTypes.FloatType;
		case DOUBLE:
			return DataTypes.DoubleType;
		case BOOLEAN:
			return DataTypes.BooleanType;
		default:
			throw new IllegalArgumentException();
	}
}
 
开发者ID:jeremyore,项目名称:spark-pmml-import,代码行数:19,代码来源:SchemaUtil.java

示例4: getJdbcTypeString

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
public static String getJdbcTypeString(org.apache.spark.sql.types.DataType dataType, boolean isPrimaryKeyOrIndexKey, boolean isText) {
    int maxVarcharLength = isPrimaryKeyOrIndexKey ? 150 : 250;
    String sqlTypeForString = isText ? "TEXT" : String.format("VARCHAR(%s)", maxVarcharLength);
    if (dataType == DataTypes.TimestampType || dataType == DataTypes.DateType) {
        return "DATETIME";
    } else if (dataType == DataTypes.StringType) {
        return sqlTypeForString;
    } else if (dataType == DataTypes.IntegerType) {
        return "INT";
    } else if (dataType == DataTypes.LongType) {
        return "BIGINT";
    } else if (dataType == DataTypes.FloatType) {
        return "FLOAT";
    } else if (dataType == DataTypes.DoubleType) {
        return "DOUBLE";
    } else if (dataType == DataTypes.BooleanType) {
        return "TINYINT";
    } else if (dataType == DataTypes.ByteType) {
        return "SMALLINT";
    } else if (dataType instanceof org.apache.spark.sql.types.DecimalType) {
        org.apache.spark.sql.types.DecimalType decimalType = (org.apache.spark.sql.types.DecimalType) dataType;
        return String.format("DECIMAL(%d,%d)", decimalType.precision(), decimalType.scale());
    } else {
        throw new RuntimeException(String.format("Unsupported property type for JDBC: %s", dataType));
    }
}
 
开发者ID:uber,项目名称:uberscriptquery,代码行数:27,代码来源:JdbcUtils.java

示例5: fromSchema

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
/**
 * Convert a datavec schema to a
 * struct type in spark
 *
 * @param schema the schema to convert
 * @return the datavec struct type
 */
public static StructType fromSchema(Schema schema) {
    StructField[] structFields = new StructField[schema.numColumns()];
    for (int i = 0; i < structFields.length; i++) {
        switch (schema.getColumnTypes().get(i)) {
            case Double:
                structFields[i] = new StructField(schema.getName(i), DataTypes.DoubleType, false, Metadata.empty());
                break;
            case Integer:
                structFields[i] =
                                new StructField(schema.getName(i), DataTypes.IntegerType, false, Metadata.empty());
                break;
            case Long:
                structFields[i] = new StructField(schema.getName(i), DataTypes.LongType, false, Metadata.empty());
                break;
            case Float:
                structFields[i] = new StructField(schema.getName(i), DataTypes.FloatType, false, Metadata.empty());
                break;
            default:
                throw new IllegalStateException(
                                "This api should not be used with strings , binary data or ndarrays. This is only for columnar data");
        }
    }
    return new StructType(structFields);
}
 
开发者ID:deeplearning4j,项目名称:DataVec,代码行数:32,代码来源:DataFrames.java

示例6: generateData_numbers_1k

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
private static Dataset<Row> generateData_numbers_1k(SparkSession spark) {
    StructField[] structFields = new StructField[1];
    org.apache.spark.sql.types.DataType dataType = DataTypes.IntegerType;
    String column = "number";
    StructField structField = new StructField(column, dataType, true, Metadata.empty());
    structFields[0] = structField;

    StructType structType = new StructType(structFields);

    List<Row> rows = new ArrayList<>();

    for (int i = 0; i <= 1000; i++) {
        Object[] objects = new Object[structFields.length];
        objects[0] = i;
        Row row = RowFactory.create(objects);
        rows.add(row);
    }

    Dataset<Row> df = spark.createDataFrame(rows, structType);
    return df;
}
 
开发者ID:uber,项目名称:uberscriptquery,代码行数:22,代码来源:QueryEngine.java

示例7: getDataType

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
private DataType getDataType(int type) {
    switch (type) {
        case LiteralType.BOOLEAN:
            return DataTypes.BooleanType;
        case LiteralType.STRING:
            return DataTypes.StringType;
        case LiteralType.FLOAT:
            return DataTypes.FloatType;
        case LiteralType.DOUBLE:
            return DataTypes.DoubleType;
        case LiteralType.INTEGER:
            return DataTypes.IntegerType;
        case LiteralType.LONG:
            return DataTypes.LongType;
        case LiteralType.DATETIME:
            // datetime not supported due to timezone issues with java.sql.Timestamp
            // check the InstanceAggregator for more info
            return DataTypes.StringType;
    }
    throw new NotImplementedException("Not able to write literal type " + type);
}
 
开发者ID:Merck,项目名称:rdf2x,代码行数:22,代码来源:InstanceRelationWriter.java

示例8: getDataTypeFromReturnType

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
private static DataType getDataTypeFromReturnType(Method method) {
    String typeName = method.getReturnType().getSimpleName();
    switch (typeName) {
    case "int":
    case "Integer":
        return DataTypes.IntegerType;
    case "long":
    case "Long":
        return DataTypes.LongType;
    case "float":
    case "Float":
        return DataTypes.FloatType;
    case "boolean":
    case "Boolean":
        return DataTypes.BooleanType;
    case "double":
    case "Double":
        return DataTypes.DoubleType;
    case "String":
        return DataTypes.StringType;
    case "Date":
    case "date":
        return DataTypes.DateType;
    case "Timestamp":
        return DataTypes.TimestampType;
    case "short":
    case "Short":
        return DataTypes.ShortType;
    case "Object":
        return DataTypes.BinaryType;
    default:
        log.debug("Using default for type [{}]", typeName);
        return DataTypes.BinaryType;
    }
}
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark.datasources,代码行数:36,代码来源:SparkBeanUtils.java

示例9: convertSqlTypeToSparkSqlDataType

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
public static org.apache.spark.sql.types.DataType convertSqlTypeToSparkSqlDataType(int sqlType) {
    if (sqlType == java.sql.Types.BOOLEAN) {
        return DataTypes.BooleanType;
    } else if (sqlType == Types.TINYINT) {
        return DataTypes.ByteType;
    } else if (sqlType == Types.SMALLINT) {
        return DataTypes.ShortType;
    } else if (sqlType == java.sql.Types.INTEGER) {
        return DataTypes.IntegerType;
    } else if (sqlType == java.sql.Types.BIGINT) {
        return DataTypes.LongType;
    } else if (sqlType == Types.DECIMAL) {
        return DataTypes.createDecimalType();
    } else if (sqlType == java.sql.Types.FLOAT) {
        return DataTypes.FloatType;
    } else if (sqlType == java.sql.Types.DOUBLE) {
        return DataTypes.DoubleType;
    } else if (sqlType == Types.DATE) {
        return DataTypes.DateType;
    } else if (sqlType == Types.TIME) {
        return DataTypes.TimestampType;
    } else if (sqlType == Types.TIMESTAMP) {
        return DataTypes.TimestampType;
    } else if (sqlType == java.sql.Types.VARCHAR) {
        return DataTypes.StringType;
    } else {
        logger.warn(String.format("Using string for unsupported sql type %s", sqlType));
        return DataTypes.StringType;
    }
}
 
开发者ID:uber,项目名称:uberscriptquery,代码行数:31,代码来源:SparkUtils.java

示例10: fromSchemaSequence

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
/**
 * Convert the DataVec sequence schema to a StructType for Spark, for example for use in
 * {@link #toDataFrameSequence(Schema, JavaRDD)}}
 * <b>Note</b>: as per {@link #toDataFrameSequence(Schema, JavaRDD)}}, the StructType has two additional columns added to it:<br>
 * - Column 0: Sequence UUID (name: {@link #SEQUENCE_UUID_COLUMN}) - a UUID for the original sequence<br>
 * - Column 1: Sequence index (name: {@link #SEQUENCE_INDEX_COLUMN} - an index (integer, starting at 0) for the position
 * of this record in the original time series.<br>
 * These two columns are required if the data is to be converted back into a sequence at a later point, for example
 * using {@link #toRecordsSequence(DataRowsFacade)}
 *
 * @param schema Schema to convert
 * @return StructType for the schema
 */
public static StructType fromSchemaSequence(Schema schema) {
    StructField[] structFields = new StructField[schema.numColumns() + 2];

    structFields[0] = new StructField(SEQUENCE_UUID_COLUMN, DataTypes.StringType, false, Metadata.empty());
    structFields[1] = new StructField(SEQUENCE_INDEX_COLUMN, DataTypes.IntegerType, false, Metadata.empty());

    for (int i = 0; i < schema.numColumns(); i++) {
        switch (schema.getColumnTypes().get(i)) {
            case Double:
                structFields[i + 2] =
                                new StructField(schema.getName(i), DataTypes.DoubleType, false, Metadata.empty());
                break;
            case Integer:
                structFields[i + 2] =
                                new StructField(schema.getName(i), DataTypes.IntegerType, false, Metadata.empty());
                break;
            case Long:
                structFields[i + 2] =
                                new StructField(schema.getName(i), DataTypes.LongType, false, Metadata.empty());
                break;
            case Float:
                structFields[i + 2] =
                                new StructField(schema.getName(i), DataTypes.FloatType, false, Metadata.empty());
                break;
            default:
                throw new IllegalStateException(
                                "This api should not be used with strings , binary data or ndarrays. This is only for columnar data");
        }
    }
    return new StructType(structFields);
}
 
开发者ID:deeplearning4j,项目名称:DataVec,代码行数:45,代码来源:DataFrames.java

示例11: testPlanner

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
@Test
public void testPlanner() {
  List<Row> rows = Lists.newArrayList(RowFactory.create("a", 1, false), RowFactory.create("b", 2, true));
  StructType schema = new StructType(new StructField[] {
      new StructField("field1", DataTypes.StringType, false, null),
      new StructField("field2", DataTypes.IntegerType, false, null),
      new StructField("field3", DataTypes.BooleanType, false, null)
  });
  
  Dataset<Row> data = Contexts.getSparkSession().createDataFrame(rows, schema);
  
  BulkPlanner p = new DeletePlanner();
  p.configure(ConfigFactory.empty());
  
  List<Tuple2<MutationType, Dataset<Row>>> planned = p.planMutationsForSet(data);
  
  assertEquals(1, planned.size());
  assertEquals(MutationType.DELETE, planned.get(0)._1());
  assertEquals(data, planned.get(0)._2());
}
 
开发者ID:cloudera-labs,项目名称:envelope,代码行数:21,代码来源:TestDeletePlanner.java

示例12: indexrSchemaToSparkSchema

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
public static List<StructField> indexrSchemaToSparkSchema(SegmentSchema schema) {
    List<StructField> fields = new ArrayList<>();
    for (ColumnSchema cs : schema.getColumns()) {
        DataType dataType;
        switch (cs.getSqlType()) {
            case INT:
                dataType = DataTypes.IntegerType;
                break;
            case BIGINT:
                dataType = DataTypes.LongType;
                break;
            case FLOAT:
                dataType = DataTypes.FloatType;
                break;
            case DOUBLE:
                dataType = DataTypes.DoubleType;
                break;
            case VARCHAR:
                dataType = DataTypes.StringType;
                break;
            case DATE:
                dataType = DataTypes.DateType;
                break;
            case DATETIME:
                dataType = DataTypes.TimestampType;
                break;
            default:
                throw new IllegalStateException("Unsupported type: " + cs.getSqlType());
        }
        fields.add(new StructField(cs.getName(), dataType, scala.Boolean.box(false), Metadata.empty()));
    }
    return fields;
}
 
开发者ID:shunfei,项目名称:indexr,代码行数:34,代码来源:IndexRUtil.java

示例13: parseDataType

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
private static DataType parseDataType(Config fieldsConfig) {
  String type = fieldsConfig.getString(FIELD_TYPE_CONFIG);
  switch (type) {
    case "string":
      return DataTypes.StringType;
    case "byte":
      return DataTypes.ByteType;
    case "short":
      return DataTypes.ShortType;
    case "int":
      return DataTypes.IntegerType;
    case "long":
      return DataTypes.LongType;
    case "float":
      return DataTypes.FloatType;
    case "double":
      return DataTypes.DoubleType;
    case "decimal":
      ConfigUtils.assertConfig(fieldsConfig, DECIMAL_SCALE_CONFIG);
      ConfigUtils.assertConfig(fieldsConfig, DECIMAL_PRECISION_CONFIG);
      return DataTypes.createDecimalType(
              fieldsConfig.getInt(DECIMAL_SCALE_CONFIG),
              fieldsConfig.getInt(DECIMAL_PRECISION_CONFIG));
    case "boolean":
      return DataTypes.BooleanType;
    case "binary":
      return DataTypes.BinaryType;
    case "date":
      return DataTypes.DateType;
    case "timestamp":
      return DataTypes.TimestampType;
    case "array":
    case "map":
    case "struct":
      throw new RuntimeException("Schema check does not currently support complex types");
    default:
      throw new RuntimeException("Unknown type: " + type);
  }
}
 
开发者ID:cloudera-labs,项目名称:envelope,代码行数:40,代码来源:CheckSchemaDatasetRule.java

示例14: testAgeRangeInt

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
@Test
public void testAgeRangeInt() {
  StructType schema = new StructType(new StructField[] {
      new StructField("name", DataTypes.StringType, false, Metadata.empty()),
      new StructField("nickname", DataTypes.StringType, false, Metadata.empty()),
      new StructField("age", DataTypes.IntegerType, false, Metadata.empty()),
      new StructField("candycrushscore", DataTypes.createDecimalType(), false, Metadata.empty())
  });

  Map<String, Object> configMap = new HashMap<>();
  configMap.put("fields", Lists.newArrayList("age"));
  configMap.put("fieldtype", "int");
  configMap.put("range", Lists.newArrayList(0,105));
  Config config = ConfigFactory.parseMap(configMap);

  RangeRowRule rule = new RangeRowRule();
  rule.configure("agerange", config);

  Row row1 = new RowWithSchema(schema, "Ian", "Ian", 34, new BigDecimal("0.00"));
  assertTrue("Row should pass rule", rule.check(row1));

  Row row2 = new RowWithSchema(schema, "Webster1", "Websta1", 110, new BigDecimal("450.10"));
  assertFalse("Row should not pass rule", rule.check(row2));

  Row row3 = new RowWithSchema(schema, "", "Ian1", 106, new BigDecimal("450.10"));
  assertFalse("Row should not pass rule", rule.check(row3));

  Row row4 = new RowWithSchema(schema, "First Last", "Ian Last", 105, new BigDecimal("450.10"));
  assertTrue("Row should pass rule", rule.check(row4));
}
 
开发者ID:cloudera-labs,项目名称:envelope,代码行数:31,代码来源:TestRangeRowRule.java

示例15: main

import org.apache.spark.sql.types.DataTypes; //导入方法依赖的package包/类
/**
 * Main method..
 *
 * @param args the arguments
 */
public static void main(final String[] args) {
  final String tableName = "SparkExampleDFUsingCSV";

  /** get the locator host/port from arguments, if specified.. **/
  final String locatorHost = args.length > 0 ? args[0] : "localhost";
  final int locatorPort = args.length > 1 ? Integer.valueOf(args[1]) : 10334;

  /** create SparkContext **/
  SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("SparkExampleDFUsingCSV");
  JavaSparkContext jsc = new JavaSparkContext(conf);
  SQLContext sqlContext = new SQLContext(jsc);

  StructType customSchema = new StructType(new StructField[] {
          new StructField("year", DataTypes.IntegerType, true, Metadata.empty()),
          new StructField("make", DataTypes.StringType, true, Metadata.empty()),
          new StructField("model", DataTypes.StringType, true, Metadata.empty()),
          new StructField("comment", DataTypes.StringType, true, Metadata.empty()),
          new StructField("blank", DataTypes.StringType, true, Metadata.empty())
  });

  DataFrame df = sqlContext.read()
          .format("com.databricks.spark.csv")
          .schema(customSchema)
          .option("header", "true")
          .load("cars.csv");


  /** print schema of the data-frame **/
  df.printSchema();

  df.show();

  Map<String, String> options = new HashMap<>(3);
  options.put("ampool.locator.host", locatorHost);
  options.put("ampool.locator.port", String.valueOf(locatorPort));

  /** overwrite existing table, if specified.. **/
  SaveMode saveMode = Boolean.getBoolean("overwrite") ? SaveMode.Overwrite : SaveMode.ErrorIfExists;

  /** save the dataFrame to Ampool as `tableName' **/
  df.write().format("io.ampool").options(options).mode(saveMode).save(tableName);

  System.out.println("########## DATA FROM AMPOOL ############");

  /** load the data-frame from Ampool `tableName' **/
  DataFrame df1 = sqlContext.read().format("io.ampool").options(options).load(tableName);

  /** show the contents of loaded data-frame **/
  df1.show();

  /** show the total number of rows in data-frame **/
  System.out.println("# NumberOfRowsInDataFrame= " + df1.count());

  /** data-frame with filter **/
  df1.filter("year > 1997").show();

  /** data-frame with selected columns **/
  df1.select("year", "make", "model", "comment").show();

  df1.registerTempTable("temp_table");

  sqlContext.sql("select * from temp_table order by year").show();
}
 
开发者ID:ampool,项目名称:monarch,代码行数:69,代码来源:SparkExampleDFUsingCSV.java


注:本文中的org.apache.spark.sql.types.DataTypes.IntegerType方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。