当前位置: 首页>>代码示例>>Java>>正文


Java DataType.isSchemaType方法代码示例

本文整理汇总了Java中org.apache.pig.data.DataType.isSchemaType方法的典型用法代码示例。如果您正苦于以下问题:Java DataType.isSchemaType方法的具体用法?Java DataType.isSchemaType怎么用?Java DataType.isSchemaType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.pig.data.DataType的用法示例。


在下文中一共展示了DataType.isSchemaType方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: fromPigSchema

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
public static org.apache.hadoop.zebra.schema.Schema fromPigSchema(
        Schema pschema) throws FrontendException, ParseException {
    org.apache.hadoop.zebra.schema.Schema tschema = new org.apache.hadoop.zebra.schema.Schema();
    Schema.FieldSchema columnSchema;
    for (int i = 0; i < pschema.size(); i++) {
        columnSchema = pschema.getField(i);
        if (columnSchema != null) {
            if (DataType.isSchemaType(columnSchema.type))
                tschema.add(new org.apache.hadoop.zebra.schema.Schema.ColumnSchema(columnSchema.alias, 
                        fromPigSchema(columnSchema.schema), toTableType(columnSchema.type)));
            else if (columnSchema.type == DataType.MAP)
                tschema.add(new org.apache.hadoop.zebra.schema.Schema.ColumnSchema(columnSchema.alias, 
                        new org.apache.hadoop.zebra.schema.Schema(new org.apache.hadoop.zebra.schema.Schema.ColumnSchema(null, 
                                org.apache.hadoop.zebra.schema.ColumnType.BYTES)), toTableType(columnSchema.type)));
            else
                tschema.add(new org.apache.hadoop.zebra.schema.Schema.ColumnSchema(columnSchema.alias, toTableType(columnSchema.type)));
        } else {
            tschema.add(new org.apache.hadoop.zebra.schema.Schema.ColumnSchema(null, ColumnType.ANY));
        }
    }
    return tschema;
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:23,代码来源:SchemaConverter.java

示例2: equals

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/***
 * Compare two field schema for equality

 * @param relaxInner If true, we don't check inner tuple schemas
 * @param relaxAlias If true, we don't check aliases
 * @return true if FieldSchemas are equal, false otherwise
 */
public static boolean equals(LogicalFieldSchema fschema,
                             LogicalFieldSchema fother,
                             boolean relaxInner,
                             boolean relaxAlias) {
    if( fschema == null || fother == null ) {
        return false ;
    }

    if( fschema.type != fother.type ) {
        return false ;
    }


    if (!relaxAlias) {
        if ( fschema.alias == null && fother.alias == null ) {
            // good
        } else if ( fschema.alias == null ) {
            return false ;
        } else if( !fschema.alias.equals( fother.alias ) ) {
            return false ;
        }
    }

    if ( (!relaxInner) && (DataType.isSchemaType(fschema.type))) {
        // Don't do the comparison if both embedded schemas are
        // null.  That will cause Schema.equals to return false,
        // even though we want to view that as true.
        if (!(fschema.schema == null && fother.schema == null)) {
            // compare recursively using schema
            if (!LogicalSchema.equals(fschema.schema, fother.schema, false, relaxAlias)) {
                return false ;
            }
        }
    }

    return true ;
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:45,代码来源:LogicalSchema.java

示例3: fitPossible

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/**
 * Computes a modified version of manhattan distance between
 * the two schemas: s1 & s2. Here the value on the same axis
 * are preferred over values that change axis as this means
 * that the number of casts required will be lesser on the same
 * axis.
 *
 * However, this function ceases to be a metric as the triangle
 * inequality does not hold.
 *
 * Each schema is an s1.size() dimensional vector.
 * The ordering for each axis is as defined by castLookup.
 * Unallowed casts are returned a dist of INFINITY.
 * @param s1
 * @param s2
 * @return
 */
private long fitPossible(Schema s1, Schema s2) {
    if(s1==null || s2==null) return INF;
    List<FieldSchema> sFields = s1.getFields();
    List<FieldSchema> fsFields = s2.getFields();
    if(sFields.size()!=fsFields.size())
        return INF;
    long score = 0;
    int castCnt=0;
    for(int i=0;i<sFields.size();i++){
        FieldSchema sFS = sFields.get(i);
        if(sFS == null){
            return INF;
        }

        // if we have a byte array do not include it
        // in the computation of the score - bytearray
        // fields will be looked at separately outside
        // of this function
        if (sFS.type == DataType.BYTEARRAY)
            continue;

        FieldSchema fsFS = fsFields.get(i);

        if(DataType.isSchemaType(sFS.type)){
            if(!FieldSchema.equals(sFS, fsFS, false, true))
                return INF;
        }
        if(FieldSchema.equals(sFS, fsFS, true, true)) continue;
        if(!castLookup.containsKey(sFS.type))
            return INF;
        if(!(castLookup.get(sFS.type).contains(fsFS.type)))
            return INF;
        score += (castLookup.get(sFS.type)).indexOf(fsFS.type) + 1;
        ++castCnt;
    }
    return score * castCnt;
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:55,代码来源:TypeCheckingExpVisitor.java

示例4: ResourceFieldSchema

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/**
 * Construct using a {@link org.apache.pig.newplan.logical.relational.LogicalSchema.LogicalFieldSchema} as the template.
 * @param fieldSchema fieldSchema to copy from
 */
public ResourceFieldSchema(LogicalFieldSchema fieldSchema) {
    type = fieldSchema.type;
    name = fieldSchema.alias;
    description = "autogenerated from Pig Field Schema";
    LogicalSchema inner = fieldSchema.schema;

    // allow partial schema 
    if (DataType.isSchemaType(type) && inner != null) {
        schema = new ResourceSchema(inner);
    } else {
        schema = null;
    }
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:18,代码来源:ResourceSchema.java

示例5: FieldSchema

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/**
 * Constructor for tuple fields.
 * 
 * @param a
 *            Alias, if known. If unknown leave null.
 * @param s
 *            Schema of this tuple.
 * @param t
 *            Type, using codes from
 *            {@link org.apache.pig.data.DataType}.
 * 
 */
public FieldSchema(String a, Schema s, byte t)  throws FrontendException {
    alias = a;
    schema = s;
    log.debug("t: " + t + " Bag: " + DataType.BAG + " tuple: " + DataType.TUPLE);
    
    if ((null != s) && !(DataType.isSchemaType(t))) {
        int errCode = 1020;
        throw new FrontendException("Only a BAG, TUPLE or MAP can have schemas. Got "
                + DataType.findTypeName(t), errCode, PigException.INPUT);
    }
    
    type = t;
    canonicalName = CanonicalNamer.getNewName();
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:27,代码来源:Schema.java

示例6: setFieldSchemaDefaultType

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/**
 * Recursively set NULL type to the specifid type 
 * @param fs the field schema whose NULL type has to be set 
 * @param t the specified type
 */
public static void setFieldSchemaDefaultType(Schema.FieldSchema fs, byte t) {
    if(null == fs) return;
    if(DataType.NULL == fs.type) {
        fs.type = t;
    }
    if(DataType.isSchemaType(fs.type)) {
        setSchemaDefaultType(fs.schema, t);
    }
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:15,代码来源:Schema.java

示例7: name

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
@Override
public String name() {
    if (DataType.isSchemaType(resultType))
        return "Cast" + "[" + DataType.findTypeName(resultType)+":"
        + fieldSchema.calcCastString() + "]" + " - "
        + mKey.toString();
    else
        return "Cast" + "[" + DataType.findTypeName(resultType) + "]" + " - "
            + mKey.toString();
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:11,代码来源:POCast.java

示例8: getOutputSchema

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
@Override
public Schema getOutputSchema(Schema input)
{
  if (input.getFields().size() == 0)
  {
    throw new RuntimeException("Expected at least one parameter");
  }
      
  Byte outputType = null;
  int pos = 0;
  for (FieldSchema field : input.getFields())
  {
    if (DataType.isSchemaType(field.type))
    {
      throw new RuntimeException(String.format("Not supported on schema types.  Found %s in position %d.",DataType.findTypeName(field.type),pos));
    }
    
    if (DataType.isComplex(field.type))
    {
      throw new RuntimeException(String.format("Not supported on complex types.  Found %s in position %d.",DataType.findTypeName(field.type),pos));
    }
    
    if (!DataType.isUsableType(field.type))
    {
      throw new RuntimeException(String.format("Not a usable type.  Found %s in position %d.",DataType.findTypeName(field.type),pos));
    }
    
    if (outputType == null)
    {
      outputType = field.type;
    }
    else if (!outputType.equals(field.type))
    {        
      if (strict)
      {
        throw new RuntimeException(String.format("Expected all types to be equal, but found '%s' in position %d.  First element has type '%s'.  "
                                                 + "If you'd like to attempt merging types, use the '%s' option, as '%s' is the default.",
                                                 DataType.findTypeName(field.type),pos,DataType.findTypeName((byte)outputType),LAZY_OPTION,STRICT_OPTION));
      }
      else
      {
        byte merged = DataType.mergeType(outputType, field.type);
        if (merged == DataType.ERROR)
        {
          throw new RuntimeException(String.format("Expected all types to be equal, but found '%s' in position %d, where output type is '%s', and types could not be merged.",
                                                   DataType.findTypeName(field.type),pos,DataType.findTypeName((byte)outputType)));
        }
        outputType = merged;
      }
    }
    
    pos++;
  }
  
  getInstanceProperties().put("type", outputType);
      
  return new Schema(new Schema.FieldSchema("item",outputType));
}
 
开发者ID:apache,项目名称:incubator-datafu,代码行数:59,代码来源:Coalesce.java

示例9: castable

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/**
 * Check if FieldSchema inFs is castable to outFs
 * @param inFs
 * @param outFs
 * @return true if it is castable
 */
public static boolean castable(LogicalFieldSchema inFs,
        LogicalFieldSchema outFs) {
    
    if(outFs == null && inFs == null) {
        return false;
    }
    
    if (outFs == null) {
        return false ;
    }
    
    if (inFs == null) {
        return false ;
    }
    byte inType = inFs.type;
    byte outType = outFs.type;
    
    if (DataType.isSchemaType(outFs.type)) {
        if(inType == DataType.BYTEARRAY) {
            // good
        } else if (inType == outType) {
            // Don't do the comparison if either input inner schema 
            // is null/empty or  both inner schemas are
            // null.  That will cause Schema.equals to return false,
            // even though we want to view that as true.
            if (!(inFs.schema == null || inFs.schema.size() == 0 || 
                    (outFs.schema == null && inFs.schema == null))) { 
                // compare recursively using schema
                if (!LogicalSchema.castable(inFs.schema, outFs.schema)) {
                    return false ;
                }
            }
        } else {
            return false;
        }
    } else {
        if (inType == outType) {
            // good
        }
        else if (inType == DataType.BOOLEAN && (outType == DataType.CHARARRAY
                || outType == DataType.BYTEARRAY || DataType.isNumberType(outType))) {
            // good
        }
        else if (DataType.isNumberType(inType) && (outType == DataType.CHARARRAY
                || outType == DataType.BYTEARRAY || DataType.isNumberType(outType))
                || outType == DataType.BOOLEAN) {
            // good
        }
        else if (inType == DataType.CHARARRAY && (outType == DataType.BYTEARRAY
                || DataType.isNumberType(outType)) || outType == DataType.BOOLEAN) {
            // good
        }
        else if (inType == DataType.BYTEARRAY) {
            // good
        }
        else {
            return false;
        }
    }
    
    return true ;
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:69,代码来源:LogicalSchema.java

示例10: castable

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/**
 * Recursively compare two schemas to check if the input schema 
 * can be cast to the cast schema
 * @param castFs schema of the cast operator
 * @param  inputFs schema of the cast input
 * @return true or falsew!
 */
public static boolean castable(
        Schema.FieldSchema castFs,
        Schema.FieldSchema inputFs) {
    if(castFs == null && inputFs == null) {
        return false;
    }
    
    if (castFs == null) {
        return false ;
    }
    
    if (inputFs == null) {
        return false ;
    }
    byte inputType = inputFs.type;
    byte castType = castFs.type;
    
    if (DataType.isSchemaType(castFs.type)) {
        if(inputType == DataType.BYTEARRAY) {
            // good
        } else if (inputType == castType) {
            // Don't do the comparison if both embedded schemas are
            // null.  That will cause Schema.equals to return false,
            // even though we want to view that as true.
            if (!(castFs.schema == null && inputFs.schema == null)) { 
                // compare recursively using schema
                if (!Schema.castable(castFs.schema, inputFs.schema)) {
                    return false ;
                }
            }
        } else {
            return false;
        }
    } else {
        if (inputType == castType) {
            // good
        }
        else if (inputType == DataType.BOOLEAN && (castType == DataType.CHARARRAY
                || castType == DataType.BYTEARRAY || DataType.isNumberType(castType))) {
            // good
        }
        else if (DataType.isNumberType(inputType) && (castType == DataType.CHARARRAY
                || castType == DataType.BYTEARRAY || DataType.isNumberType(castType)
                || castType == DataType.BOOLEAN || castType == DataType.DATETIME)) {
            // good
        }
        else if (inputType == DataType.DATETIME && (castType == DataType.CHARARRAY
                || castType == DataType.BYTEARRAY || DataType.isNumberType(castType))) {
            // good
        }
        else if (inputType == DataType.CHARARRAY && (castType == DataType.BYTEARRAY
                || DataType.isNumberType(castType) || castType == DataType.BOOLEAN
                || castType == DataType.DATETIME)) {
            // good
        } 
        else if (inputType == DataType.BYTEARRAY) {
            // good
        }
        else {
            return false;
        }
    }
    
    return true ;
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:73,代码来源:Schema.java

示例11: equals

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/***
 * Compare two field schema for equality
 * @param fschema
 * @param fother
 * @param relaxInner If true, we don't check inner tuple schemas
 * @param relaxAlias If true, we don't check aliases
 * @return true if FieldSchemas are equal, false otherwise
 */
public static boolean equals(FieldSchema fschema,
                             FieldSchema fother,
                             boolean relaxInner,
                             boolean relaxAlias) {
    if (fschema == null) {
        return false ;
    }

    if (fother == null) {
        return false ;
    }

    if (fschema.type != fother.type) {
        return false ;
    }


    if (!relaxAlias) {
        if ( (fschema.alias == null) &&
             (fother.alias == null) ) {
            // good
        }
        else if ( (fschema.alias != null) &&
                  (fother.alias == null) ) {
            return false ;
        }
        else if ( (fschema.alias == null) &&
                  (fother.alias != null) ) {
            return false ;
        }
        else if (!fschema.alias.equals(fother.alias)) {
            return false ;
        }
    }

    if ( (!relaxInner) && (DataType.isSchemaType(fschema.type))) {
        // Don't do the comparison if both embedded schemas are
        // null.  That will cause Schema.equals to return false,
        // even though we want to view that as true.
        if (!(fschema.schema == null && fother.schema == null)) {
            // compare recursively using schema
            if (!Schema.equals(fschema.schema, fother.schema, false, relaxAlias)) {
                return false ;
            }
        }
    }

    return true ;
}
 
开发者ID:sigmoidanalytics,项目名称:spork-streaming,代码行数:58,代码来源:Schema.java

示例12: fitPossible

import org.apache.pig.data.DataType; //导入方法依赖的package包/类
/**
 * Computes a modified version of manhattan distance between
 * the two schemas: s1 & s2. Here the value on the same axis
 * are preferred over values that change axis as this means
 * that the number of casts required will be lesser on the same
 * axis.
 *
 * However, this function ceases to be a metric as the triangle
 * inequality does not hold.
 *
 * Each schema is an s1.size() dimensional vector.
 * The ordering for each axis is as defined by castLookup.
 * Unallowed casts are returned a dist of INFINITY.
 * @param s1
 * @param s2
 * @param s2Type
 * @return
 */
private long fitPossible(Schema s1, Schema s2, SchemaType s2Type) {
    if(s1==null || s2==null) return INF;
    List<FieldSchema> sFields = s1.getFields();
    List<FieldSchema> fsFields = s2.getFields();
    
    if((s2Type == SchemaType.NORMAL) && (sFields.size()!=fsFields.size()))
        return INF;
    if((s2Type == SchemaType.VARARG) && (sFields.size() < fsFields.size()))
        return INF;
    long score = 0;
    int castCnt=0;
    for(int i=0;i<sFields.size();i++){
        FieldSchema sFS = sFields.get(i);
        if(sFS == null){
            return INF;
        }

        // if we have a byte array do not include it
        // in the computation of the score - bytearray
        // fields will be looked at separately outside
        // of this function
        if (sFS.type == DataType.BYTEARRAY)
            continue;
        
        //if we get to the vararg field (if defined) : take it repeatedly
        FieldSchema fsFS = ((s2Type == SchemaType.VARARG) && i >= s2.size()) ? 
                fsFields.get(s2.size() - 1) : fsFields.get(i);

        if(DataType.isSchemaType(sFS.type)){
            if(!FieldSchema.equals(sFS, fsFS, false, true))
                return INF;
        }
        if(FieldSchema.equals(sFS, fsFS, true, true)) continue;
        if(!castLookup.containsKey(sFS.type))
            return INF;
        if(!(castLookup.get(sFS.type).contains(fsFS.type)))
            return INF;
        score += (castLookup.get(sFS.type)).indexOf(fsFS.type) + 1;
        ++castCnt;
    }
    return score * castCnt;
}
 
开发者ID:sigmoidanalytics,项目名称:spork,代码行数:61,代码来源:TypeCheckingExpVisitor.java


注:本文中的org.apache.pig.data.DataType.isSchemaType方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。