本文整理汇总了Java中org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator.nextLong方法的典型用法代码示例。如果您正苦于以下问题:Java LongPrimitiveIterator.nextLong方法的具体用法?Java LongPrimitiveIterator.nextLong怎么用?Java LongPrimitiveIterator.nextLong使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator
的用法示例。
在下文中一共展示了LongPrimitiveIterator.nextLong方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: buildRecommend
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public void buildRecommend(String taskName) {
String itemmodelsPath = RecommendConfig.class.getResource("/").getPath() + "itemmodels.csv";
HadoopUtil.download(taskName, itemmodelsPath, true);
try {
DataModel dataModel = new FileDataModel(new File(itemmodelsPath));
UserSimilarity similarity = new SpearmanCorrelationSimilarity(dataModel);
UserNeighborhood userNeighborhood = new ThresholdUserNeighborhood(0.1, similarity, dataModel);
LongPrimitiveIterator userIDs = dataModel.getUserIDs();
while (userIDs.hasNext()) {
Long userID = userIDs.nextLong();
long[] neighborhoods = userNeighborhood.getUserNeighborhood(userID);
for (long neighborhood : neighborhoods) {
double userSimilarity = similarity.userSimilarity(userID, neighborhood);
System.out.printf("(%s,%s,%f)", userID, neighborhood, userSimilarity);
System.out.println();
}
}
} catch (TasteException | IOException e) {
log.error(e);
}
}
示例2: main
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public static void main(String[] args) throws TasteException, IOException {
String file = "other/testdata/pv.csv";
DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
//基于UserCF城市街区距离(曼哈顿)算法
RecommenderBuilder rb1 = RecommenderEvaluator.userCityBlock(dataModel);
//基于ItemCF对数自然相似度算法
RecommenderBuilder rb2 = RecommenderEvaluator.itemCityBlock(dataModel);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
System.out.print("userCityBlock =>");
result(uid, rb1, dataModel);
System.out.print("itemLoglikelihood=>");
result(uid, rb2, dataModel);
}
}
示例3: removeNotUpdated
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
private static void removeNotUpdated(LongPrimitiveIterator it,
FastIDSet updated,
FastIDSet recentlyActive,
Lock writeLock) {
writeLock.lock();
try {
while (it.hasNext()) {
long id = it.nextLong();
if (!updated.contains(id) && !recentlyActive.contains(id)) {
it.remove();
}
}
} finally {
writeLock.unlock();
}
}
示例4: getIDsFromKeys
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
private static FastIDSet getIDsFromKeys(FastByIDMap<float[]> map, Lock readLock, FastIDSet tagIDs) {
readLock.lock();
try {
FastIDSet ids = new FastIDSet(map.size());
LongPrimitiveIterator it = map.keySetIterator();
while (it.hasNext()) {
long id = it.nextLong();
if (!tagIDs.contains(id)) {
ids.add(id);
}
}
return ids;
} finally {
readLock.unlock();
}
}
示例5: main
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public static void main(String[] args) throws TasteException, IOException {
String file = "other/testdata/pv.csv";
DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
RecommenderBuilder rb1 = RecommenderEvaluator.userCityBlock(dataModel);
RecommenderBuilder rb2 = RecommenderEvaluator.itemLoglikelihood(dataModel);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
System.out.print("userCityBlock =>");
filterOutdate(uid, rb1, dataModel);
System.out.print("itemLoglikelihood=>");
filterOutdate(uid, rb2, dataModel);
}
}
示例6: userCF
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public static void userCF(DataModel dataModel) throws TasteException {
UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, true);
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
示例7: itemCF
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public static void itemCF(DataModel dataModel) throws TasteException {
ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, true);
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
示例8: slopeOne
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public static void slopeOne(DataModel dataModel) throws TasteException {
RecommenderBuilder recommenderBuilder = RecommendFactory.slopeOneRecommender();
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
示例9: itemKNN
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public static void itemKNN(DataModel dataModel) throws TasteException {
ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
示例10: svd
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public static void svd(DataModel dataModel) throws TasteException {
RecommenderBuilder recommenderBuilder = RecommendFactory.svdRecommender(new ALSWRFactorizer(dataModel, 10, 0.05, 10));
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
示例11: treeCluster
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
public static void treeCluster(DataModel dataModel) throws TasteException {
UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
ClusterSimilarity clusterSimilarity = RecommendFactory.clusterSimilarity(RecommendFactory.SIMILARITY.FARTHEST_NEIGHBOR_CLUSTER, userSimilarity);
RecommenderBuilder recommenderBuilder = RecommendFactory.treeClusterRecommender(clusterSimilarity, 10);
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
示例12: randomFrom
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
/**
* @param set to choose from
* @param random random number generator
* @return element of the set chosen uniformly at random
*/
public static int randomFrom(FastIDSet set, RandomGenerator random) {
int size = set.size();
Preconditions.checkArgument(size > 0, "Empty set");
LongPrimitiveIterator it = set.iterator();
it.skip(random.nextInt(size));
return (int) it.nextLong();
}
示例13: runALSSVDRecommender
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
private static void runALSSVDRecommender(DataModel dataModel)
throws TasteException {
System.out.println("Start of Running an ALS SVD Recommendation");
RecommenderBuilder recommenderBuilder = EEGVideoRecommender.buildSVDRecommender();
SVDRecommender recommender = (SVDRecommender) recommenderBuilder
.buildRecommender(dataModel);
RunningAverage runningAverage = new FullRunningAverage();
LongPrimitiveIterator userIDs = dataModel.getUserIDs();
while (userIDs.hasNext()) {
long userID = userIDs.nextLong();
for (Preference pref : dataModel.getPreferencesFromUser(userID)) {
double ratingValue = pref.getValue();
double preferenceEstimate = recommender.estimatePreference(
userID, pref.getItemID());
System.out.println(userID + "," + pref.getItemID() + ","
+ ratingValue);
double errorValue = ratingValue - preferenceEstimate;
runningAverage.addDatum(errorValue * errorValue);
}
}
double rmse = Math.sqrt(runningAverage.getAverage());
System.out.println(rmse);
// Recommender Evaluation -- Average Absolute Difference Evaluator
RecommenderEvaluator absoluteDifferenceEvaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
double score = absoluteDifferenceEvaluator.evaluate(recommenderBuilder,
null, dataModel, 0.9, 1.0);
System.out.println("ALS-based Recommender Average Score is: " + score);
// Recommender Evaluation -- RMS Evaluator
RecommenderEvaluator rmsEvaluator = new RMSRecommenderEvaluator();
double rmsscore = rmsEvaluator.evaluate(recommenderBuilder, null,
dataModel, 0.9, 1.0);
System.out.println("ALS-based Recommender RMS Score is:" + rmsscore);
// Recommender Evaluation -- IRStats Evaluator
RecommenderIRStatsEvaluator irStatsEvaluator = new GenericRecommenderIRStatsEvaluator();
IRStatistics stats = irStatsEvaluator.evaluate(recommenderBuilder,
null, dataModel, null, 2,
GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);
System.out.println("Precision Valus is : " + stats.getPrecision());
System.out.println("Recall Value is : " + stats.getRecall());
System.out.println("End of Running an ALS SVD Recommendation");
}
示例14: recommendedBecause
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; //导入方法依赖的package包/类
/**
* <p>Lists the items that were most influential in recommending a given item to a given user. Exactly how this
* is determined is left to the implementation, but, generally this will return items that the user prefers
* and that are similar to the given item.</p>
*
* <p>These values by which the results are ordered are opaque values and have no interpretation
* other than that larger means stronger.</p>
*
* @param userID ID of user who was recommended the item
* @param itemID ID of item that was recommended
* @param howMany maximum number of items to return
* @return {@link List} of {@link RecommendedItem}, ordered from most influential in recommended the given
* item to least
* @throws NoSuchUserException if the user is not known in the model
* @throws NoSuchItemException if the item is not known in the model
* @throws NotReadyException if the recommender has no model available yet
*/
@Override
public List<RecommendedItem> recommendedBecause(long userID, long itemID, int howMany)
throws NoSuchUserException, NoSuchItemException, NotReadyException {
Preconditions.checkArgument(howMany > 0, "howMany must be positive");
Generation generation = getCurrentGeneration();
FastByIDMap<FastIDSet> knownItemIDs = generation.getKnownItemIDs();
if (knownItemIDs == null) {
throw new UnsupportedOperationException("No known item IDs available");
}
Lock knownItemLock = generation.getKnownItemLock().readLock();
FastIDSet userKnownItemIDs;
knownItemLock.lock();
try {
userKnownItemIDs = knownItemIDs.get(userID);
} finally {
knownItemLock.unlock();
}
if (userKnownItemIDs == null) {
throw new NoSuchUserException(userID);
}
FastByIDMap<float[]> Y = generation.getY();
Lock yLock = generation.getYLock().readLock();
yLock.lock();
try {
float[] features = Y.get(itemID);
if (features == null) {
throw new NoSuchItemException(itemID);
}
FastByIDMap<float[]> toFeatures;
synchronized (userKnownItemIDs) {
toFeatures = new FastByIDMap<float[]>(userKnownItemIDs.size());
LongPrimitiveIterator it = userKnownItemIDs.iterator();
while (it.hasNext()) {
long fromItemID = it.nextLong();
float[] fromFeatures = Y.get(fromItemID);
toFeatures.put(fromItemID, fromFeatures);
}
}
return TopN.selectTopN(new RecommendedBecauseIterator(toFeatures.entrySet().iterator(),
generation.getUserTagIDs(),
features),
howMany);
} finally {
yLock.unlock();
}
}