本文整理汇总了Java中org.apache.kafka.clients.producer.KafkaProducer.send方法的典型用法代码示例。如果您正苦于以下问题:Java KafkaProducer.send方法的具体用法?Java KafkaProducer.send怎么用?Java KafkaProducer.send使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.kafka.clients.producer.KafkaProducer
的用法示例。
在下文中一共展示了KafkaProducer.send方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.LongSerializer");
props.put("linger.ms", 0);
KafkaProducer<String, Long> producer = new KafkaProducer<>(props);
for(int i=0; i < 10000; i++){
String ip = "127.0.0." + i % 10;
System.out.println(ip);
producer.send(new ProducerRecord<>("visits", ip, System.currentTimeMillis() + i));
}
producer.close();
}
示例2: publishDummyData
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public void publishDummyData() {
final String topic = "TestTopic";
// Create publisher
final Map<String, Object> config = new HashMap<>();
config.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
config.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
config.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
final KafkaProducer<String, String> producer = new KafkaProducer<>(config);
for (int charCode = 65; charCode < 91; charCode++) {
final char[] key = new char[1];
key[0] = (char) charCode;
producer.send(new ProducerRecord<>(topic, new String(key), new String(key)));
}
producer.flush();
producer.close();
}
示例3: publishDummyDataNumbers
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public void publishDummyDataNumbers() {
final String topic = "NumbersTopic";
// Create publisher
final Map<String, Object> config = new HashMap<>();
config.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
config.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
config.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
final KafkaProducer<Integer, Integer> producer = new KafkaProducer<>(config);
for (int value = 0; value < 10000; value++) {
producer.send(new ProducerRecord<>(topic, value, value));
}
producer.flush();
producer.close();
}
示例4: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public static void main(final String[] args) {
IPLogProducer ipLogProducer = new IPLogProducer();
Properties producerProps = new Properties();
//replace broker ip with your kafka broker ip
producerProps.put("bootstrap.servers", "localhost:9092");
producerProps.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producerProps.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producerProps.put("auto.create.topics.enable","true");
KafkaProducer<String, String> ipProducer = new KafkaProducer<String, String>(producerProps);
try (Scanner scanner = new Scanner(ipLogProducer.readfile())) {
while (scanner.hasNextLine()) {
String line = scanner.nextLine();
ProducerRecord ipData = new ProducerRecord<String, String>("iplog", line);
Future<RecordMetadata> recordMetadata = ipProducer.send(ipData);
}
scanner.close();
} catch (IOException e) {
e.printStackTrace();
}
ipProducer.close();
}
开发者ID:PacktPublishing,项目名称:Building-Data-Streaming-Applications-with-Apache-Kafka,代码行数:26,代码来源:IPLogProducer.java
示例5: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
CommandLine commandLine = parseCommandLine(args);
String zkUrl = commandLine.getOptionValue(ZOOKEEPER);
String topic = commandLine.getOptionValue(TOPIC);
int numMessages = Integer.parseInt(commandLine.getOptionValue(NUM_MESSAGES));
Random random = new Random();
Properties props = OperatorUtil.createKafkaProducerProperties(zkUrl);
KafkaProducer kafkaProducer = new KafkaProducer<>(props);
byte[] key = new byte[16];
byte[] data = new byte[1024];
for (int i = 0; i < numMessages; i++) {
for (int j = 0; j < data.length; j++) {
data[j] = (byte)random.nextInt();
}
ProducerRecord<byte[], byte[]> producerRecord = new ProducerRecord(
topic, 0, System.currentTimeMillis(), key, data);
Future<RecordMetadata> future = kafkaProducer.send(producerRecord);
future.get();
if (i % 100 == 0) {
System.out.println("Have wrote " + i + " messages to kafka");
}
}
}
示例6: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
/**
* @param args
*/
public static void main(String[] args) {
Properties props=new Properties();
props.put("bootstrap.servers", "localhost:9092,localhost:9093");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String,String> sampleProducer= new KafkaProducer<String,String>(props);
// ProducerRecord<String, String> record = new ProducerRecord<String, String>(topicName, value);
// sampleProducer.send(record);
for (int i = 0; i < 10; i++)
sampleProducer.send(new ProducerRecord<String, String>("demo-topic1","Data:"+ Integer.toString(i)));
sampleProducer.close();
}
示例7: run
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
@Override
public void run() {
PropertyReader propertyReader = new PropertyReader();
Properties producerProps = new Properties();
producerProps.put("bootstrap.servers", propertyReader.getPropertyValue("broker.list"));
producerProps.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producerProps.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producerProps.put("auto.create.topics.enable", "true");
KafkaProducer<String, String> ipProducer = new KafkaProducer<String, String>(producerProps);
BufferedReader br = readFile();
String oldLine = "";
try {
while ((oldLine = br.readLine()) != null) {
String line = getNewRecordWithRandomIP(oldLine).replace("[", "").replace("]", "");
ProducerRecord ipData = new ProducerRecord<String, String>(propertyReader.getPropertyValue("topic"), line);
Future<RecordMetadata> recordMetadata = ipProducer.send(ipData);
}
} catch (IOException e) {
e.printStackTrace();
}
ipProducer.close();
}
开发者ID:PacktPublishing,项目名称:Building-Data-Streaming-Applications-with-Apache-Kafka,代码行数:26,代码来源:IPLogProducer.java
示例8: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public static void main(String args[]) {
Properties properties = new Properties();
properties.put("bootstrap.servers", "localhost:9092");
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("acks", "1");
KafkaProducer<Integer, String> producer = new KafkaProducer<Integer, String>(properties);
int counter =0;
int nbrOfEventsRequired = Integer.parseInt(args[0]);
while (counter<nbrOfEventsRequired) {
StringBuffer stream = new StringBuffer();
long phoneNumber = ThreadLocalRandom.current().nextLong(9999999950l,
9999999999l);
int bin = ThreadLocalRandom.current().nextInt(100000, 9999999);
int bout = ThreadLocalRandom.current().nextInt(100000, 9999999);
stream.append(phoneNumber);
stream.append(",");
stream.append(bin);
stream.append(",");
stream.append(bout);
stream.append(",");
stream.append(System.currentTimeMillis());
System.out.println(stream.toString());
ProducerRecord<Integer, String> data = new ProducerRecord<Integer, String>(
"device-data", stream.toString());
producer.send(data);
counter++;
}
producer.close();
}
开发者ID:PacktPublishing,项目名称:Practical-Real-time-Processing-and-Analytics,代码行数:37,代码来源:DataGenerator.java
示例9: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public static void main(String args[]) {
Properties properties = new Properties();
properties.put("bootstrap.servers", "localhost:9092");
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("acks", "1");
KafkaProducer<Integer, String> producer = new KafkaProducer<Integer, String>(properties);
int counter =0;
int nbrOfEventsRequired = Integer.parseInt(args[0]);
while (counter<nbrOfEventsRequired) {
StringBuffer stream = new StringBuffer();
long phoneNumber = ThreadLocalRandom.current().nextLong(9999999950l,
9999999960l);
int bin = ThreadLocalRandom.current().nextInt(1000, 9999);
int bout = ThreadLocalRandom.current().nextInt(1000, 9999);
stream.append(phoneNumber);
stream.append(",");
stream.append(bin);
stream.append(",");
stream.append(bout);
stream.append(",");
stream.append(new Date(ThreadLocalRandom.current().nextLong()));
System.out.println(stream.toString());
ProducerRecord<Integer, String> data = new ProducerRecord<Integer, String>(
"storm-trident-diy", stream.toString());
producer.send(data);
counter++;
}
producer.close();
}
开发者ID:PacktPublishing,项目名称:Practical-Real-time-Processing-and-Analytics,代码行数:37,代码来源:DataGenerator.java
示例10: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
/**
*
* @param args
* @throws InterruptedException
*/
public static void main(String[] args) throws InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
Schema.Parser parser = new Schema.Parser();
Schema schema = parser.parse(USER_SCHEMA);
Injection<GenericRecord, byte[]> recordInjection = GenericAvroCodecs.toBinary(schema);
KafkaProducer<String, byte[]> producer = new KafkaProducer<>(props);
SplittableRandom random = new SplittableRandom();
while (true) {
GenericData.Record avroRecord = new GenericData.Record(schema);
avroRecord.put("str1", "Str 1-" + random.nextInt(10));
avroRecord.put("str2", "Str 2-" + random.nextInt(1000));
avroRecord.put("int1", random.nextInt(10000));
byte[] bytes = recordInjection.apply(avroRecord);
ProducerRecord<String, byte[]> record = new ProducerRecord<>("mytopic", bytes);
producer.send(record);
Thread.sleep(100);
}
}
示例11: sendMessage
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public void sendMessage(String msg) {
KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);
ProducerRecord<String,String> record = new ProducerRecord<String, String>(properties.getProperty("topic"),msg);
producer.send(record);
producer.close();
}
示例12: generate
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
static void generate(final String kafka) throws Exception {
Runtime.getRuntime().addShutdownHook(new Thread() {
@Override
public void run() {
isRunning = false;
}
});
final Properties producerProps = new Properties();
producerProps.put(ProducerConfig.CLIENT_ID_CONFIG, "SmokeTest");
producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, kafka);
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
producerProps.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, true);
final KafkaProducer<String, Integer> producer = new KafkaProducer<>(producerProps);
final Random rand = new Random(System.currentTimeMillis());
int numRecordsProduced = 0;
while (isRunning) {
final String key = "" + rand.nextInt(MAX_NUMBER_OF_KEYS);
final int value = rand.nextInt(10000);
final ProducerRecord<String, Integer> record = new ProducerRecord<>("data", key, value);
producer.send(record, new Callback() {
@Override
public void onCompletion(final RecordMetadata metadata, final Exception exception) {
if (exception != null) {
exception.printStackTrace();
Exit.exit(1);
}
}
});
numRecordsProduced++;
if (numRecordsProduced % 1000 == 0) {
System.out.println(numRecordsProduced + " records produced");
}
Utils.sleep(rand.nextInt(50));
}
producer.close();
System.out.println(numRecordsProduced + " records produced");
}
示例13: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public static void main(String[] args) {
Map<String, Object> configs = new HashMap<String, Object>();
configs.put("bootstrap.servers", "192.168.0.107:9092,192.168.0.108:9092,192.168.0.109:9092");
// acks是判断消息是否成功发送的条件,将acks指定为"all"将会阻塞消息,
// 当所有的副本都返回后才表明该消息发送成功,这种设置性能最低,但是是最可靠的。
configs.put("acks", "all");
// retries表示重试的次数,如果请求失败,生产者会自动重试。如果启用重试,则会有重复消息的可能性。
configs.put("retries", 0);
// batch.size指定了缓冲区的大小,kafka的producer会缓存每个分区未发送消息。
configs.put("batch.size", 16384);
// linger.ms指示生产者发送请求前等待一段时间,等待更多的消息来填满缓冲区。
// 默认缓冲可立即发送,即使缓冲空间还没有满。但是,如果想减少请求的数量,可以设置linger.time大于0。
// 如果我们没有填满缓冲区,这个设置将增加1毫秒的延迟请求以等待更多的消息。
// 需要注意的是,在高负载下,相近的时间一般也会组成批,即使linger.time=0。
// 在不处于高负载的情况下,如果设置比0大,以少量的延迟代价换取更少的,更有效的请求。
configs.put("linger.ms", 1);
// 控制生产者可用的缓存总量,如果消息发送速度比其传输到服务器的快,将会耗尽这个缓存空间。
// 当缓存空间耗尽,其他发送调用将被阻塞,阻塞时间的阈值通过max.block.ms设定,之后它将抛出一个TimeoutException。
configs.put("buffer.memory", 33554432);
// 将用户提供的key和value对象ProducerRecord转换成字节
configs.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
configs.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<String, String>(configs);
ProducerRecord<String, String> record = null;
long index = 0L;
boolean controller = true;
while (controller) {
index++;
System.out.println(index + "------------");
record = new ProducerRecord<String, String>(KAFKA_TOPIC, "record-" + index);
// 生产者的send()方法是异步的,send()
// 方法添加消息到缓冲区等待发送,并立即返回,这样可以并行发送多条消息而不阻塞去等待每一条消息的响应。为了减少请求的数量,生产者将单个的消息聚集在一起批量发送来提高效率。
Future<RecordMetadata> future = producer.send(record);
try {
RecordMetadata recordMetadata = future.get();
System.out.format("PARTITION: %d OFFSET: %d\n", recordMetadata.partition(), recordMetadata.offset());
} catch (Exception e) {
e.printStackTrace();
}
}
producer.close();
}
示例14: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public static void main(final String[] args) throws Exception {
System.out.println("StreamsTest instance started");
final String kafka = args.length > 0 ? args[0] : "localhost:9092";
final String stateDirStr = args.length > 1 ? args[1] : TestUtils.tempDirectory().getAbsolutePath();
final boolean eosEnabled = args.length > 2 ? Boolean.parseBoolean(args[2]) : false;
final File stateDir = new File(stateDirStr);
stateDir.mkdir();
final Properties streamsProperties = new Properties();
streamsProperties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, kafka);
streamsProperties.put(StreamsConfig.APPLICATION_ID_CONFIG, "kafka-streams-system-test-broker-compatibility");
streamsProperties.put(StreamsConfig.STATE_DIR_CONFIG, stateDir.toString());
streamsProperties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
streamsProperties.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
streamsProperties.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
streamsProperties.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 100);
if (eosEnabled) {
streamsProperties.put(StreamsConfig.PROCESSING_GUARANTEE_CONFIG, StreamsConfig.EXACTLY_ONCE);
}
final int timeout = 6000;
streamsProperties.put(StreamsConfig.consumerPrefix(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG), timeout);
streamsProperties.put(StreamsConfig.consumerPrefix(ConsumerConfig.FETCH_MAX_WAIT_MS_CONFIG), timeout);
streamsProperties.put(StreamsConfig.REQUEST_TIMEOUT_MS_CONFIG, timeout + 1);
final KStreamBuilder builder = new KStreamBuilder();
builder.stream(SOURCE_TOPIC).to(SINK_TOPIC);
final KafkaStreams streams = new KafkaStreams(builder, streamsProperties);
streams.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
@Override
public void uncaughtException(final Thread t, final Throwable e) {
System.out.println("FATAL: An unexpected exception is encountered on thread " + t + ": " + e);
streams.close(30, TimeUnit.SECONDS);
}
});
System.out.println("start Kafka Streams");
streams.start();
System.out.println("send data");
final Properties producerProperties = new Properties();
producerProperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, kafka);
producerProperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
producerProperties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
final KafkaProducer<String, String> producer = new KafkaProducer<>(producerProperties);
producer.send(new ProducerRecord<>(SOURCE_TOPIC, "key", "value"));
System.out.println("wait for result");
loopUntilRecordReceived(kafka, eosEnabled);
System.out.println("close Kafka Streams");
streams.close();
}
示例15: main
import org.apache.kafka.clients.producer.KafkaProducer; //导入方法依赖的package包/类
public static void main(String[] args) throws IOException {
// set up the producer
KafkaProducer<String, String> producer;
try (InputStream props = Resources.getResource("producer.props").openStream()) {
Properties properties = new Properties();
properties.load(props);
producer = new KafkaProducer<>(properties);
}
try {
int i =0;
File file = new File("/home/leiming/DataFlow/imply-2.2.3/quickstart/wikiticker-2016-06-27-sampled.json");
BufferedReader br = new BufferedReader(new FileReader(file));
String st;
while((st=br.readLine())!=null) {
// send lots of messages
/**
producer.send(new ProducerRecord<String, String>(
"fast-messages",
String.format("{\"type\":\"test\", \"t\":%.3f, \"k\":%d}", System.nanoTime() * 1e-9, i)));
**/
// every so often send to a different topic
producer.send(new ProducerRecord<String, String>(
"leidaxia",
// String.format("{\"type\":\"marker\", \"t\":%.3f, \"k\":%d}", System.nanoTime() * 1e-9, i)));
st));
/**producer.send(new ProducerRecord<String, String>(
"summary-markers",
String.format("{\"type\":\"other\", \"t\":%.3f, \"k\":%d}", System.nanoTime() * 1e-9, i)));
**/
producer.flush();
System.out.println("Sent msg num" + i);
System.out.println("Sent msg " + st);
i =i + 1;
}
} catch (Throwable throwable) {
System.out.printf("%s", throwable.getStackTrace());
} finally {
producer.close();
}
}