本文整理汇总了Java中org.apache.hadoop.mapreduce.RecordReader.initialize方法的典型用法代码示例。如果您正苦于以下问题:Java RecordReader.initialize方法的具体用法?Java RecordReader.initialize怎么用?Java RecordReader.initialize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.hadoop.mapreduce.RecordReader
的用法示例。
在下文中一共展示了RecordReader.initialize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: readSplit
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
private static List<Text> readSplit(KeyValueTextInputFormat format,
InputSplit split, Job job) throws IOException, InterruptedException {
List<Text> result = new ArrayList<Text>();
Configuration conf = job.getConfiguration();
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(conf);
RecordReader<Text, Text> reader = format.createRecordReader(split,
MapReduceTestUtil.createDummyMapTaskAttemptContext(conf));
MapContext<Text, Text, Text, Text> mcontext =
new MapContextImpl<Text, Text, Text, Text>(conf,
context.getTaskAttemptID(), reader, null, null,
MapReduceTestUtil.createDummyReporter(),
split);
reader.initialize(split, mcontext);
while (reader.nextKeyValue()) {
result.add(new Text(reader.getCurrentValue()));
}
reader.close();
return result;
}
示例2: testReinit
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
@Test
public void testReinit() throws Exception {
// Test that a split containing multiple files works correctly,
// with the child RecordReader getting its initialize() method
// called a second time.
TaskAttemptID taskId = new TaskAttemptID("jt", 0, TaskType.MAP, 0, 0);
Configuration conf = new Configuration();
TaskAttemptContext context = new TaskAttemptContextImpl(conf, taskId);
// This will create a CombineFileRecordReader that itself contains a
// DummyRecordReader.
InputFormat inputFormat = new ChildRRInputFormat();
Path [] files = { new Path("file1"), new Path("file2") };
long [] lengths = { 1, 1 };
CombineFileSplit split = new CombineFileSplit(files, lengths);
RecordReader rr = inputFormat.createRecordReader(split, context);
assertTrue("Unexpected RR type!", rr instanceof CombineFileRecordReader);
// first initialize() call comes from MapTask. We'll do it here.
rr.initialize(split, context);
// First value is first filename.
assertTrue(rr.nextKeyValue());
assertEquals("file1", rr.getCurrentValue().toString());
// The inner RR will return false, because it only emits one (k, v) pair.
// But there's another sub-split to process. This returns true to us.
assertTrue(rr.nextKeyValue());
// And the 2nd rr will have its initialize method called correctly.
assertEquals("file2", rr.getCurrentValue().toString());
// But after both child RR's have returned their singleton (k, v), this
// should also return false.
assertFalse(rr.nextKeyValue());
}
示例3: readSplit
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
private static List<Text> readSplit(InputFormat<LongWritable,Text> format,
InputSplit split, Job job) throws IOException, InterruptedException {
List<Text> result = new ArrayList<Text>();
Configuration conf = job.getConfiguration();
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(conf);
RecordReader<LongWritable, Text> reader = format.createRecordReader(split,
MapReduceTestUtil.createDummyMapTaskAttemptContext(conf));
MapContext<LongWritable,Text,LongWritable,Text> mcontext =
new MapContextImpl<LongWritable,Text,LongWritable,Text>(conf,
context.getTaskAttemptID(), reader, null, null,
MapReduceTestUtil.createDummyReporter(),
split);
reader.initialize(split, mcontext);
while (reader.nextKeyValue()) {
result.add(new Text(reader.getCurrentValue()));
}
return result;
}
示例4: getSplits
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
@Test
public void getSplits() throws Exception {
S3MapReduceCpOptions options = getOptions();
Configuration configuration = new Configuration();
configuration.set("mapred.map.tasks", String.valueOf(options.getMaxMaps()));
CopyListing.getCopyListing(configuration, CREDENTIALS, options).buildListing(
new Path(cluster.getFileSystem().getUri().toString() + "/tmp/testDynInputFormat/fileList.seq"), options);
JobContext jobContext = new JobContextImpl(configuration, new JobID());
DynamicInputFormat<Text, CopyListingFileStatus> inputFormat = new DynamicInputFormat<>();
List<InputSplit> splits = inputFormat.getSplits(jobContext);
int nFiles = 0;
int taskId = 0;
for (InputSplit split : splits) {
RecordReader<Text, CopyListingFileStatus> recordReader = inputFormat.createRecordReader(split, null);
StubContext stubContext = new StubContext(jobContext.getConfiguration(), recordReader, taskId);
final TaskAttemptContext taskAttemptContext = stubContext.getContext();
recordReader.initialize(splits.get(0), taskAttemptContext);
float previousProgressValue = 0f;
while (recordReader.nextKeyValue()) {
CopyListingFileStatus fileStatus = recordReader.getCurrentValue();
String source = fileStatus.getPath().toString();
assertTrue(expectedFilePaths.contains(source));
final float progress = recordReader.getProgress();
assertTrue(progress >= previousProgressValue);
assertTrue(progress >= 0.0f);
assertTrue(progress <= 1.0f);
previousProgressValue = progress;
++nFiles;
}
assertTrue(recordReader.getProgress() == 1.0f);
++taskId;
}
Assert.assertEquals(expectedFilePaths.size(), nFiles);
}
示例5: countRecords
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
private int countRecords(int numSplits)
throws IOException, InterruptedException {
InputFormat<Text, BytesWritable> format =
new SequenceFileInputFilter<Text, BytesWritable>();
if (numSplits == 0) {
numSplits =
random.nextInt(MAX_LENGTH / (SequenceFile.SYNC_INTERVAL / 20)) + 1;
}
FileInputFormat.setMaxInputSplitSize(job,
fs.getFileStatus(inFile).getLen() / numSplits);
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(job.getConfiguration());
// check each split
int count = 0;
for (InputSplit split : format.getSplits(job)) {
RecordReader<Text, BytesWritable> reader =
format.createRecordReader(split, context);
MapContext<Text, BytesWritable, Text, BytesWritable> mcontext =
new MapContextImpl<Text, BytesWritable, Text, BytesWritable>(
job.getConfiguration(),
context.getTaskAttemptID(), reader, null, null,
MapReduceTestUtil.createDummyReporter(), split);
reader.initialize(split, mcontext);
try {
while (reader.nextKeyValue()) {
LOG.info("Accept record " + reader.getCurrentKey().toString());
count++;
}
} finally {
reader.close();
}
}
return count;
}
示例6: testRecordReaderInit
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
@Test
public void testRecordReaderInit() throws InterruptedException, IOException {
// Test that we properly initialize the child recordreader when
// CombineFileInputFormat and CombineFileRecordReader are used.
TaskAttemptID taskId = new TaskAttemptID("jt", 0, TaskType.MAP, 0, 0);
Configuration conf1 = new Configuration();
conf1.set(DUMMY_KEY, "STATE1");
TaskAttemptContext context1 = new TaskAttemptContextImpl(conf1, taskId);
// This will create a CombineFileRecordReader that itself contains a
// DummyRecordReader.
InputFormat inputFormat = new ChildRRInputFormat();
Path [] files = { new Path("file1") };
long [] lengths = { 1 };
CombineFileSplit split = new CombineFileSplit(files, lengths);
RecordReader rr = inputFormat.createRecordReader(split, context1);
assertTrue("Unexpected RR type!", rr instanceof CombineFileRecordReader);
// Verify that the initial configuration is the one being used.
// Right after construction the dummy key should have value "STATE1"
assertEquals("Invalid initial dummy key value", "STATE1",
rr.getCurrentKey().toString());
// Switch the active context for the RecordReader...
Configuration conf2 = new Configuration();
conf2.set(DUMMY_KEY, "STATE2");
TaskAttemptContext context2 = new TaskAttemptContextImpl(conf2, taskId);
rr.initialize(split, context2);
// And verify that the new context is updated into the child record reader.
assertEquals("Invalid secondary dummy key value", "STATE2",
rr.getCurrentKey().toString());
}
示例7: testNoRecordLength
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
/**
* Test with no record length set.
*/
@Test (timeout=5000)
public void testNoRecordLength() throws Exception {
localFs.delete(workDir, true);
Path file = new Path(workDir, new String("testFormat.txt"));
createFile(file, null, 10, 10);
// Create the job and do not set fixed record length
Job job = Job.getInstance(defaultConf);
FileInputFormat.setInputPaths(job, workDir);
FixedLengthInputFormat format = new FixedLengthInputFormat();
List<InputSplit> splits = format.getSplits(job);
boolean exceptionThrown = false;
for (InputSplit split : splits) {
try {
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(job.getConfiguration());
RecordReader<LongWritable, BytesWritable> reader =
format.createRecordReader(split, context);
MapContext<LongWritable, BytesWritable, LongWritable, BytesWritable>
mcontext =
new MapContextImpl<LongWritable, BytesWritable, LongWritable,
BytesWritable>(job.getConfiguration(), context.getTaskAttemptID(),
reader, null, null, MapReduceTestUtil.createDummyReporter(), split);
reader.initialize(split, mcontext);
} catch(IOException ioe) {
exceptionThrown = true;
LOG.info("Exception message:" + ioe.getMessage());
}
}
assertTrue("Exception for not setting record length:", exceptionThrown);
}
示例8: testZeroRecordLength
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
/**
* Test with record length set to 0
*/
@Test (timeout=5000)
public void testZeroRecordLength() throws Exception {
localFs.delete(workDir, true);
Path file = new Path(workDir, new String("testFormat.txt"));
createFile(file, null, 10, 10);
Job job = Job.getInstance(defaultConf);
// Set the fixed length record length config property
FixedLengthInputFormat format = new FixedLengthInputFormat();
format.setRecordLength(job.getConfiguration(), 0);
FileInputFormat.setInputPaths(job, workDir);
List<InputSplit> splits = format.getSplits(job);
boolean exceptionThrown = false;
for (InputSplit split : splits) {
try {
TaskAttemptContext context =
MapReduceTestUtil.createDummyMapTaskAttemptContext(
job.getConfiguration());
RecordReader<LongWritable, BytesWritable> reader =
format.createRecordReader(split, context);
MapContext<LongWritable, BytesWritable, LongWritable, BytesWritable>
mcontext =
new MapContextImpl<LongWritable, BytesWritable, LongWritable,
BytesWritable>(job.getConfiguration(), context.getTaskAttemptID(),
reader, null, null, MapReduceTestUtil.createDummyReporter(), split);
reader.initialize(split, mcontext);
} catch(IOException ioe) {
exceptionThrown = true;
LOG.info("Exception message:" + ioe.getMessage());
}
}
assertTrue("Exception for zero record length:", exceptionThrown);
}
示例9: testNegativeRecordLength
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
/**
* Test with record length set to a negative value
*/
@Test (timeout=5000)
public void testNegativeRecordLength() throws Exception {
localFs.delete(workDir, true);
Path file = new Path(workDir, new String("testFormat.txt"));
createFile(file, null, 10, 10);
// Set the fixed length record length config property
Job job = Job.getInstance(defaultConf);
FixedLengthInputFormat format = new FixedLengthInputFormat();
format.setRecordLength(job.getConfiguration(), -10);
FileInputFormat.setInputPaths(job, workDir);
List<InputSplit> splits = format.getSplits(job);
boolean exceptionThrown = false;
for (InputSplit split : splits) {
try {
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(job.getConfiguration());
RecordReader<LongWritable, BytesWritable> reader =
format.createRecordReader(split, context);
MapContext<LongWritable, BytesWritable, LongWritable, BytesWritable>
mcontext =
new MapContextImpl<LongWritable, BytesWritable, LongWritable,
BytesWritable>(job.getConfiguration(), context.getTaskAttemptID(),
reader, null, null, MapReduceTestUtil.createDummyReporter(), split);
reader.initialize(split, mcontext);
} catch(IOException ioe) {
exceptionThrown = true;
LOG.info("Exception message:" + ioe.getMessage());
}
}
assertTrue("Exception for negative record length:", exceptionThrown);
}
示例10: readSplit
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
private static List<String> readSplit(FixedLengthInputFormat format,
InputSplit split,
Job job) throws Exception {
List<String> result = new ArrayList<String>();
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(job.getConfiguration());
RecordReader<LongWritable, BytesWritable> reader =
format.createRecordReader(split, context);
MapContext<LongWritable, BytesWritable, LongWritable, BytesWritable>
mcontext =
new MapContextImpl<LongWritable, BytesWritable, LongWritable,
BytesWritable>(job.getConfiguration(), context.getTaskAttemptID(),
reader, null, null, MapReduceTestUtil.createDummyReporter(), split);
LongWritable key;
BytesWritable value;
try {
reader.initialize(split, mcontext);
while (reader.nextKeyValue()) {
key = reader.getCurrentKey();
value = reader.getCurrentValue();
result.add(new String(value.getBytes(), 0, value.getLength()));
}
} finally {
reader.close();
}
return result;
}
示例11: getSample
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
/**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, Job job)
throws IOException, InterruptedException {
List<InputSplit> splits = inf.getSplits(job);
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.size());
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
TaskAttemptContext samplingContext = new TaskAttemptContextImpl(
job.getConfiguration(), new TaskAttemptID());
RecordReader<K,V> reader = inf.createRecordReader(
splits.get(i), samplingContext);
reader.initialize(splits.get(i), samplingContext);
while (reader.nextKeyValue()) {
samples.add(ReflectionUtils.copy(job.getConfiguration(),
reader.getCurrentKey(), null));
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
示例12: testLoadMapper
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
@SuppressWarnings({"rawtypes", "unchecked"})
@Test (timeout=10000)
public void testLoadMapper() throws Exception {
Configuration conf = new Configuration();
conf.setInt(JobContext.NUM_REDUCES, 2);
CompressionEmulationUtil.setCompressionEmulationEnabled(conf, true);
conf.setBoolean(MRJobConfig.MAP_OUTPUT_COMPRESS, true);
TaskAttemptID taskId = new TaskAttemptID();
RecordReader<NullWritable, GridmixRecord> reader = new FakeRecordReader();
LoadRecordGkGrWriter writer = new LoadRecordGkGrWriter();
OutputCommitter committer = new CustomOutputCommitter();
StatusReporter reporter = new TaskAttemptContextImpl.DummyReporter();
LoadSplit split = getLoadSplit();
MapContext<NullWritable, GridmixRecord, GridmixKey, GridmixRecord> mapContext = new MapContextImpl<NullWritable, GridmixRecord, GridmixKey, GridmixRecord>(
conf, taskId, reader, writer, committer, reporter, split);
// context
Context ctx = new WrappedMapper<NullWritable, GridmixRecord, GridmixKey, GridmixRecord>()
.getMapContext(mapContext);
reader.initialize(split, ctx);
ctx.getConfiguration().setBoolean(MRJobConfig.MAP_OUTPUT_COMPRESS, true);
CompressionEmulationUtil.setCompressionEmulationEnabled(
ctx.getConfiguration(), true);
LoadJob.LoadMapper mapper = new LoadJob.LoadMapper();
// setup, map, clean
mapper.run(ctx);
Map<GridmixKey, GridmixRecord> data = writer.getData();
// check result
assertEquals(2, data.size());
}
示例13: validateSetupGenDC
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
/**
* Validate setupGenerateDistCacheData by validating <li>permissions of the
* distributed cache directories and <li>content of the generated sequence
* file. This includes validation of dist cache file paths and their file
* sizes.
*/
private void validateSetupGenDC(Configuration jobConf, long[] sortedFileSizes)
throws IOException, InterruptedException {
// build things needed for validation
long sumOfFileSizes = 0;
for (int i = 0; i < sortedFileSizes.length; i++) {
sumOfFileSizes += sortedFileSizes[i];
}
FileSystem fs = FileSystem.get(jobConf);
assertEquals("Number of distributed cache files to be generated is wrong.",
sortedFileSizes.length,
jobConf.getInt(GenerateDistCacheData.GRIDMIX_DISTCACHE_FILE_COUNT, -1));
assertEquals("Total size of dist cache files to be generated is wrong.",
sumOfFileSizes,
jobConf.getLong(GenerateDistCacheData.GRIDMIX_DISTCACHE_BYTE_COUNT, -1));
Path filesListFile = new Path(
jobConf.get(GenerateDistCacheData.GRIDMIX_DISTCACHE_FILE_LIST));
FileStatus stat = fs.getFileStatus(filesListFile);
assertEquals("Wrong permissions of dist Cache files list file "
+ filesListFile, new FsPermission((short) 0644), stat.getPermission());
InputSplit split = new FileSplit(filesListFile, 0, stat.getLen(),
(String[]) null);
TaskAttemptContext taskContext = MapReduceTestUtil
.createDummyMapTaskAttemptContext(jobConf);
RecordReader<LongWritable, BytesWritable> reader = new GenerateDistCacheData.GenDCDataFormat()
.createRecordReader(split, taskContext);
MapContext<LongWritable, BytesWritable, NullWritable, BytesWritable> mapContext = new MapContextImpl<LongWritable, BytesWritable, NullWritable, BytesWritable>(
jobConf, taskContext.getTaskAttemptID(), reader, null, null,
MapReduceTestUtil.createDummyReporter(), split);
reader.initialize(split, mapContext);
// start validating setupGenerateDistCacheData
doValidateSetupGenDC(reader, fs, sortedFileSizes);
}
示例14: verifyWithMockedMapReduce
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
private void verifyWithMockedMapReduce(Job job, int numRegions, int expectedNumSplits,
byte[] startRow, byte[] stopRow)
throws IOException, InterruptedException {
TableSnapshotInputFormat tsif = new TableSnapshotInputFormat();
List<InputSplit> splits = tsif.getSplits(job);
Assert.assertEquals(expectedNumSplits, splits.size());
HBaseTestingUtility.SeenRowTracker rowTracker =
new HBaseTestingUtility.SeenRowTracker(startRow, stopRow);
for (int i = 0; i < splits.size(); i++) {
// validate input split
InputSplit split = splits.get(i);
Assert.assertTrue(split instanceof TableSnapshotRegionSplit);
// validate record reader
TaskAttemptContext taskAttemptContext = mock(TaskAttemptContext.class);
when(taskAttemptContext.getConfiguration()).thenReturn(job.getConfiguration());
RecordReader<ImmutableBytesWritable, Result> rr =
tsif.createRecordReader(split, taskAttemptContext);
rr.initialize(split, taskAttemptContext);
// validate we can read all the data back
while (rr.nextKeyValue()) {
byte[] row = rr.getCurrentKey().get();
verifyRowFromMap(rr.getCurrentKey(), rr.getCurrentValue());
rowTracker.addRow(row);
}
rr.close();
}
// validate all rows are seen
rowTracker.validate();
}
示例15: testBinary
import org.apache.hadoop.mapreduce.RecordReader; //导入方法依赖的package包/类
public void testBinary() throws IOException, InterruptedException {
Job job = Job.getInstance();
FileSystem fs = FileSystem.getLocal(job.getConfiguration());
Path dir = new Path(System.getProperty("test.build.data",".") + "/mapred");
Path file = new Path(dir, "testbinary.seq");
Random r = new Random();
long seed = r.nextLong();
r.setSeed(seed);
fs.delete(dir, true);
FileInputFormat.setInputPaths(job, dir);
Text tkey = new Text();
Text tval = new Text();
SequenceFile.Writer writer = new SequenceFile.Writer(fs,
job.getConfiguration(), file, Text.class, Text.class);
try {
for (int i = 0; i < RECORDS; ++i) {
tkey.set(Integer.toString(r.nextInt(), 36));
tval.set(Long.toString(r.nextLong(), 36));
writer.append(tkey, tval);
}
} finally {
writer.close();
}
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(job.getConfiguration());
InputFormat<BytesWritable,BytesWritable> bformat =
new SequenceFileAsBinaryInputFormat();
int count = 0;
r.setSeed(seed);
BytesWritable bkey = new BytesWritable();
BytesWritable bval = new BytesWritable();
Text cmpkey = new Text();
Text cmpval = new Text();
DataInputBuffer buf = new DataInputBuffer();
FileInputFormat.setInputPaths(job, file);
for (InputSplit split : bformat.getSplits(job)) {
RecordReader<BytesWritable, BytesWritable> reader =
bformat.createRecordReader(split, context);
MapContext<BytesWritable, BytesWritable, BytesWritable, BytesWritable>
mcontext = new MapContextImpl<BytesWritable, BytesWritable,
BytesWritable, BytesWritable>(job.getConfiguration(),
context.getTaskAttemptID(), reader, null, null,
MapReduceTestUtil.createDummyReporter(),
split);
reader.initialize(split, mcontext);
try {
while (reader.nextKeyValue()) {
bkey = reader.getCurrentKey();
bval = reader.getCurrentValue();
tkey.set(Integer.toString(r.nextInt(), 36));
tval.set(Long.toString(r.nextLong(), 36));
buf.reset(bkey.getBytes(), bkey.getLength());
cmpkey.readFields(buf);
buf.reset(bval.getBytes(), bval.getLength());
cmpval.readFields(buf);
assertTrue(
"Keys don't match: " + "*" + cmpkey.toString() + ":" +
tkey.toString() + "*",
cmpkey.toString().equals(tkey.toString()));
assertTrue(
"Vals don't match: " + "*" + cmpval.toString() + ":" +
tval.toString() + "*",
cmpval.toString().equals(tval.toString()));
++count;
}
} finally {
reader.close();
}
}
assertEquals("Some records not found", RECORDS, count);
}