本文整理汇总了Java中org.apache.hadoop.mapreduce.Mapper.Context.write方法的典型用法代码示例。如果您正苦于以下问题:Java Context.write方法的具体用法?Java Context.write怎么用?Java Context.write使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.hadoop.mapreduce.Mapper.Context
的用法示例。
在下文中一共展示了Context.write方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: map
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
@Override
public void map(NullWritable key, NullWritable value, Context context) throws IOException, InterruptedException {
int counter = 0;
System.out.println("starting mapper");
System.out.println();
for (int i = 0; i < numberOfRecords; i++) {
String keyRoot = StringUtils.leftPad(Integer.toString(r.nextInt(Short.MAX_VALUE)), 5, '0');
if (i % 1000 == 0) {
System.out.print(".");
}
for (int j = 0; j < 10; j++) {
hKey.set(Bytes.toBytes(keyRoot + "|" + runID + "|" + taskId));
kv = new KeyValue(hKey.get(), columnFamily, Bytes.toBytes("C" + j), Bytes.toBytes("counter:" + counter++ ));
context.write(hKey, kv);
}
}
System.out.println("finished mapper");
}
示例2: map
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
line = line.trim().toLowerCase();
line = line.replaceAll("[^a-z]+", " ");
String words[] = line.split("\\s+"); //split by ' ', '\t', '\n', etc.
if(words.length < 2) {
return;
}
StringBuilder sb;
for (int i = 0; i < words.length-1; i++) {
sb = new StringBuilder();
for (int j = 0; i + j < words.length && j < noGram; j++) {
sb.append(" ");
sb.append(words[i + j]);
context.write(new Text(sb.toString().trim()), new IntWritable(1));
}
}
}
示例3: setup
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
@Override
protected void setup(Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
overrideRdfContext = conf.getBoolean(OVERRIDE_CONTEXT_PROPERTY, false);
String defCtx = conf.get(DEFAULT_CONTEXT_PROPERTY);
defaultRdfContext = defCtx == null ? null : SimpleValueFactory.getInstance().createIRI(defCtx);
decimationFactor = conf.getInt(DECIMATION_FACTOR_PROPERTY, DEFAULT_DECIMATION_FACTOR);
for (byte b = 1; b < 6; b++) {
context.write(new ImmutableBytesWritable(new byte[] {b}), new LongWritable(1));
}
timestamp = conf.getLong(DEFAULT_TIMESTAMP_PROPERTY, System.currentTimeMillis());
}
示例4: map
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//from ratings
String[] mydata = value.toString().split("\\^");
if (mydata.length == 3){
if (mydata[1].contains("Palo Alto")){
context.write(new Text(mydata[0].trim()),new IntWritable(1));
}
/*if("review".compareTo(mydata[mydata.length-2].trim())== 0){
context.write(new Text(mydata[mydata.length-2].trim()),new IntWritable(1));
}
if("user".compareTo(mydata[mydata.length-2].trim())== 0){
context.write(new Text(mydata[mydata.length-2].trim()),new IntWritable(1));
}*/
}
}
示例5: cleanup
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
@Override
protected void cleanup(
Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
super.cleanup(context);
Collections.sort(myarray,new MyMovieComparator());
int count =0;
for(MyBusinessData data : myarray){
result.set(""+data.rating);
myKey.set(data.businessId);
context.write(myKey, result); // create a pair <keyword, number of occurences>
count++;
if(count >=10)break;}
}
示例6: map
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
public void map(Map<String, ByteBuffer> keys, Map<String, ByteBuffer> columns, Context context) throws IOException, InterruptedException
{
for (Entry<String, ByteBuffer> column : columns.entrySet())
{
if (!"line".equalsIgnoreCase(column.getKey()))
continue;
String value = ByteBufferUtil.string(column.getValue());
StringTokenizer itr = new StringTokenizer(value);
while (itr.hasMoreTokens())
{
word.set(itr.nextToken());
context.write(word, one);
}
}
}
示例7: map
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
if (first) {
FileSplit split = (FileSplit) context.getInputSplit();
Path path = split.getPath(); // current split path
lvalue.set(path.getName());
lkey.set(key.get());
context.write(lkey, lvalue);
first = false;
}
String line = value.toString();
if (!line.isEmpty()) {
Instance instance = converter.convert(line);
double prediction = ruleBase.classify(instance);
lkey.set(dataset.getLabel(instance));
lvalue.set(Double.toString(prediction));
context.write(lkey, lvalue);
}
}
示例8: reduce
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
String word = key.toString();
double sumPosScore = 0;
double sumNegScore = 0;
for(Text text : values) {
String line = text.toString();
String [] ar = line.split(",");
String w_seed = ar[0];
if(SeedWordsHelper.isPositive(w_seed))
sumPosScore += Double.parseDouble(ar[1]);
else if(SeedWordsHelper.isNegative(w_seed))
sumNegScore += Double.parseDouble(ar[1]);
}
//context.write(new Text(word.substring(0, 1)), new Text(word + "=" + sumPosScore + ";" + sumNegScore));
context.write(new Text(word), new Text(sumPosScore + " " + sumNegScore));
}
示例9: map
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
public void map(ImmutableBytesWritable row, Result value, Context context) throws InterruptedException, IOException {
String w_seed = new String(row.get());
//System.out.println("PosNegScoreCalculationMapper: w_seed =" + w_seed);
for(KeyValue kv : value.raw()){
String word = new String(kv.getQualifier());
double score = Bytes.toDouble(kv.getValue());
context.write(new Text(word), new Text(w_seed + "," + String.valueOf(score)));
//System.out.println("To Reducer goes: key = " + word + " value = w_seed, score which is " + w_seed + "," + score);
}
}
示例10: reduce
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
public void reduce(Text word, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException
{
int sum = 0;
for (IntWritable val : values)
sum += val.get();
keys.put("word", ByteBufferUtil.bytes(word.toString()));
context.write(keys, getBindVariables(word, sum));
}
示例11: map
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
@Override
public void map(BytesWritable key, Tuple value, Context context) throws IOException, InterruptedException {
System.out.println("key = " + key);
System.out.println("value = " + value);
context.write(key, value);
}
示例12: reduce
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
@Override
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
for(Text val : values) {
String str = val.toString();
Delete delRow1 = new Delete(Bytes.toBytes(key.toString()));
delRow1.deleteColumn("weight".getBytes(), str.getBytes());
//System.out.println("RemoveEdgesReducer: key = " + key.toString() + " sec_key = " + str);
Delete delRow2 = new Delete(Bytes.toBytes(str.toString()));
delRow2.deleteColumn("weight".getBytes(), key.getBytes());
//System.out.println("RemoveEdgesReducer: key = " + str + " sec_key = " + key.toString());
context.write(null, delRow1);
context.write(null, delRow2);
}
}
示例13: reduce
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
public void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
// int i = 0;
// for (IntWritable val : values) {
// i += val.get();
// }
//Put put = new Put(Bytes.toBytes("some"));
//put.add("cooccurrence".getBytes(), "sdff".getBytes(), Bytes.toBytes(1));
//context.write(null, put);
double cos_sim = 0;
for(DoubleWritable d : values) {
cos_sim += Double.parseDouble(d.toString());
}
String line = key.toString();
String [] str = line.split(",");
String w_u = str[0];
String w_v = str[1];
//if(cos_sim > theta) {
Put put1 = new Put(Bytes.toBytes(w_u));
put1.add("weight".getBytes(), w_v.getBytes(), Bytes.toBytes(cos_sim));
//System.out.println("GraphTable_cos_similatiry: key = " + w_u + " sec_key = " + w_v + " weight = " + cos_sim);
Put put2 = new Put(Bytes.toBytes(w_v));
put2.add("weight".getBytes(), w_u.getBytes(), Bytes.toBytes(cos_sim));
//System.out.println("GraphTable_cos_similatiry: key = " + w_v + " sec_key = " + w_u + " weight = " + cos_sim);
context.write(null, put1);
context.write(null, put2);
//}
}
示例14: collect
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
@Override
public void collect(Context oc, Tuple tuple)
throws InterruptedException, IOException {
Byte index = (Byte)tuple.get(0);
PigNullableWritable key =
HDataType.getWritableComparableTypes(tuple.get(1), keyType);
NullableTuple val = new NullableTuple((Tuple)tuple.get(2));
// Both the key and the value need the index. The key needs it so
// that it can be sorted on the index in addition to the key
// value. The value needs it so that POPackage can properly
// assign the tuple to its slot in the projection.
key.setIndex(index);
val.setIndex(index);
oc.write(key, val);
}
示例15: processOnePackageOutput
import org.apache.hadoop.mapreduce.Mapper.Context; //导入方法依赖的package包/类
public boolean processOnePackageOutput(Context oc)
throws IOException, InterruptedException {
Result res = pack.getNext(DUMMYTUPLE);
if(res.returnStatus==POStatus.STATUS_OK){
Tuple packRes = (Tuple)res.result;
if(rp.isEmpty()){
oc.write(null, packRes);
return false;
}
for (int i = 0; i < roots.length; i++) {
roots[i].attachInput(packRes);
}
runPipeline(leaf);
}
if(res.returnStatus==POStatus.STATUS_NULL) {
return false;
}
if(res.returnStatus==POStatus.STATUS_ERR){
int errCode = 2093;
String msg = "Encountered error in package operator while processing group.";
throw new ExecException(msg, errCode, PigException.BUG);
}
if(res.returnStatus==POStatus.STATUS_EOP) {
return true;
}
return false;
}