当前位置: 首页>>代码示例>>Java>>正文


Java MapReduceTestUtil.createDummyMapTaskAttemptContext方法代码示例

本文整理汇总了Java中org.apache.hadoop.mapreduce.MapReduceTestUtil.createDummyMapTaskAttemptContext方法的典型用法代码示例。如果您正苦于以下问题:Java MapReduceTestUtil.createDummyMapTaskAttemptContext方法的具体用法?Java MapReduceTestUtil.createDummyMapTaskAttemptContext怎么用?Java MapReduceTestUtil.createDummyMapTaskAttemptContext使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.hadoop.mapreduce.MapReduceTestUtil的用法示例。


在下文中一共展示了MapReduceTestUtil.createDummyMapTaskAttemptContext方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: readSplit

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
private static List<Text> readSplit(KeyValueTextInputFormat format, 
    InputSplit split, Job job) throws IOException, InterruptedException {
  List<Text> result = new ArrayList<Text>();
  Configuration conf = job.getConfiguration();
  TaskAttemptContext context = MapReduceTestUtil.
    createDummyMapTaskAttemptContext(conf);
  RecordReader<Text, Text> reader = format.createRecordReader(split, 
    MapReduceTestUtil.createDummyMapTaskAttemptContext(conf));
  MapContext<Text, Text, Text, Text> mcontext = 
    new MapContextImpl<Text, Text, Text, Text>(conf, 
    context.getTaskAttemptID(), reader, null, null,
    MapReduceTestUtil.createDummyReporter(), 
    split);
  reader.initialize(split, mcontext);
  while (reader.nextKeyValue()) {
    result.add(new Text(reader.getCurrentValue()));
  }
  reader.close();
  return result;
}
 
开发者ID:naver,项目名称:hadoop,代码行数:21,代码来源:TestMRKeyValueTextInputFormat.java

示例2: readSplit

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
private static List<Text> readSplit(InputFormat<LongWritable,Text> format,
  InputSplit split, Job job) throws IOException, InterruptedException {
  List<Text> result = new ArrayList<Text>();
  Configuration conf = job.getConfiguration();
  TaskAttemptContext context = MapReduceTestUtil.
    createDummyMapTaskAttemptContext(conf);
  RecordReader<LongWritable, Text> reader = format.createRecordReader(split,
    MapReduceTestUtil.createDummyMapTaskAttemptContext(conf));
  MapContext<LongWritable,Text,LongWritable,Text> mcontext =
    new MapContextImpl<LongWritable,Text,LongWritable,Text>(conf,
    context.getTaskAttemptID(), reader, null, null,
    MapReduceTestUtil.createDummyReporter(),
    split);
  reader.initialize(split, mcontext);
  while (reader.nextKeyValue()) {
    result.add(new Text(reader.getCurrentValue()));
  }
  return result;
}
 
开发者ID:naver,项目名称:hadoop,代码行数:20,代码来源:TestCombineTextInputFormat.java

示例3: readSplit

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
private static List<Text> readSplit(KeyValueTextInputFormat format, 
    InputSplit split, Job job) throws IOException, InterruptedException {
  List<Text> result = new ArrayList<Text>();
  Configuration conf = job.getConfiguration();
  TaskAttemptContext context = MapReduceTestUtil.
    createDummyMapTaskAttemptContext(conf);
  RecordReader<Text, Text> reader = format.createRecordReader(split, 
    MapReduceTestUtil.createDummyMapTaskAttemptContext(conf));
  MapContext<Text, Text, Text, Text> mcontext = 
    new MapContextImpl<Text, Text, Text, Text>(conf, 
    context.getTaskAttemptID(), reader, null, null,
    MapReduceTestUtil.createDummyReporter(), 
    split);
  reader.initialize(split, mcontext);
  while (reader.nextKeyValue()) {
    result.add(new Text(reader.getCurrentValue()));
  }
  return result;
}
 
开发者ID:Nextzero,项目名称:hadoop-2.6.0-cdh5.4.3,代码行数:20,代码来源:TestMRKeyValueTextInputFormat.java

示例4: countRecords

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
private int countRecords(int numSplits) 
    throws IOException, InterruptedException {
  InputFormat<Text, BytesWritable> format =
    new SequenceFileInputFilter<Text, BytesWritable>();
  if (numSplits == 0) {
    numSplits =
      random.nextInt(MAX_LENGTH / (SequenceFile.SYNC_INTERVAL / 20)) + 1;
  }
  FileInputFormat.setMaxInputSplitSize(job, 
    fs.getFileStatus(inFile).getLen() / numSplits);
  TaskAttemptContext context = MapReduceTestUtil.
    createDummyMapTaskAttemptContext(job.getConfiguration());
  // check each split
  int count = 0;
  for (InputSplit split : format.getSplits(job)) {
    RecordReader<Text, BytesWritable> reader =
      format.createRecordReader(split, context);
    MapContext<Text, BytesWritable, Text, BytesWritable> mcontext = 
      new MapContextImpl<Text, BytesWritable, Text, BytesWritable>(
      job.getConfiguration(), 
      context.getTaskAttemptID(), reader, null, null, 
      MapReduceTestUtil.createDummyReporter(), split);
    reader.initialize(split, mcontext);
    try {
      while (reader.nextKeyValue()) {
        LOG.info("Accept record " + reader.getCurrentKey().toString());
        count++;
      }
    } finally {
      reader.close();
    }
  }
  return count;
}
 
开发者ID:naver,项目名称:hadoop,代码行数:35,代码来源:TestMRSequenceFileInputFilter.java

示例5: testNoRecordLength

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
/**
 * Test with no record length set.
 */
@Test (timeout=5000)
public void testNoRecordLength() throws Exception {
  localFs.delete(workDir, true);
  Path file = new Path(workDir, new String("testFormat.txt"));
  createFile(file, null, 10, 10);
  // Create the job and do not set fixed record length
  Job job = Job.getInstance(defaultConf);
  FileInputFormat.setInputPaths(job, workDir);
  FixedLengthInputFormat format = new FixedLengthInputFormat();
  List<InputSplit> splits = format.getSplits(job);
  boolean exceptionThrown = false;
  for (InputSplit split : splits) {
    try {
      TaskAttemptContext context = MapReduceTestUtil.
          createDummyMapTaskAttemptContext(job.getConfiguration());
      RecordReader<LongWritable, BytesWritable> reader =
          format.createRecordReader(split, context);
      MapContext<LongWritable, BytesWritable, LongWritable, BytesWritable>
          mcontext =
          new MapContextImpl<LongWritable, BytesWritable, LongWritable,
          BytesWritable>(job.getConfiguration(), context.getTaskAttemptID(),
          reader, null, null, MapReduceTestUtil.createDummyReporter(), split);
      reader.initialize(split, mcontext);
    } catch(IOException ioe) {
      exceptionThrown = true;
      LOG.info("Exception message:" + ioe.getMessage());
    }
  }
  assertTrue("Exception for not setting record length:", exceptionThrown);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:34,代码来源:TestFixedLengthInputFormat.java

示例6: testZeroRecordLength

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
/**
 * Test with record length set to 0
 */
@Test (timeout=5000)
public void testZeroRecordLength() throws Exception {
  localFs.delete(workDir, true);
  Path file = new Path(workDir, new String("testFormat.txt"));
  createFile(file, null, 10, 10);
  Job job = Job.getInstance(defaultConf);
  // Set the fixed length record length config property 
  FixedLengthInputFormat format = new FixedLengthInputFormat();
  format.setRecordLength(job.getConfiguration(), 0);
  FileInputFormat.setInputPaths(job, workDir);
  List<InputSplit> splits = format.getSplits(job);
  boolean exceptionThrown = false;
  for (InputSplit split : splits) {
    try {
      TaskAttemptContext context =
          MapReduceTestUtil.createDummyMapTaskAttemptContext(
          job.getConfiguration());
      RecordReader<LongWritable, BytesWritable> reader = 
          format.createRecordReader(split, context);
      MapContext<LongWritable, BytesWritable, LongWritable, BytesWritable>
          mcontext =
          new MapContextImpl<LongWritable, BytesWritable, LongWritable,
          BytesWritable>(job.getConfiguration(), context.getTaskAttemptID(),
          reader, null, null, MapReduceTestUtil.createDummyReporter(), split);
      reader.initialize(split, mcontext);
    } catch(IOException ioe) {
      exceptionThrown = true;
      LOG.info("Exception message:" + ioe.getMessage());
    }
  }
  assertTrue("Exception for zero record length:", exceptionThrown);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:36,代码来源:TestFixedLengthInputFormat.java

示例7: testNegativeRecordLength

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
/**
 * Test with record length set to a negative value
 */
@Test (timeout=5000)
public void testNegativeRecordLength() throws Exception {
  localFs.delete(workDir, true);
  Path file = new Path(workDir, new String("testFormat.txt"));
  createFile(file, null, 10, 10);
  // Set the fixed length record length config property 
  Job job = Job.getInstance(defaultConf);
  FixedLengthInputFormat format = new FixedLengthInputFormat();
  format.setRecordLength(job.getConfiguration(), -10);
  FileInputFormat.setInputPaths(job, workDir);
  List<InputSplit> splits = format.getSplits(job);
  boolean exceptionThrown = false;
  for (InputSplit split : splits) {
    try {
      TaskAttemptContext context = MapReduceTestUtil.
          createDummyMapTaskAttemptContext(job.getConfiguration());
      RecordReader<LongWritable, BytesWritable> reader = 
          format.createRecordReader(split, context);
      MapContext<LongWritable, BytesWritable, LongWritable, BytesWritable>
          mcontext =
          new MapContextImpl<LongWritable, BytesWritable, LongWritable,
          BytesWritable>(job.getConfiguration(), context.getTaskAttemptID(),
          reader, null, null, MapReduceTestUtil.createDummyReporter(), split);
      reader.initialize(split, mcontext);
    } catch(IOException ioe) {
      exceptionThrown = true;
      LOG.info("Exception message:" + ioe.getMessage());
    }
  }
  assertTrue("Exception for negative record length:", exceptionThrown);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:35,代码来源:TestFixedLengthInputFormat.java

示例8: readSplit

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
private static List<String> readSplit(FixedLengthInputFormat format, 
                                      InputSplit split, 
                                      Job job) throws Exception {
  List<String> result = new ArrayList<String>();
  TaskAttemptContext context = MapReduceTestUtil.
      createDummyMapTaskAttemptContext(job.getConfiguration());
  RecordReader<LongWritable, BytesWritable> reader =
      format.createRecordReader(split, context);
  MapContext<LongWritable, BytesWritable, LongWritable, BytesWritable>
      mcontext =
      new MapContextImpl<LongWritable, BytesWritable, LongWritable,
      BytesWritable>(job.getConfiguration(), context.getTaskAttemptID(),
      reader, null, null, MapReduceTestUtil.createDummyReporter(), split);
  LongWritable key;
  BytesWritable value;
  try {
    reader.initialize(split, mcontext);
    while (reader.nextKeyValue()) {
      key = reader.getCurrentKey();
      value = reader.getCurrentValue();
      result.add(new String(value.getBytes(), 0, value.getLength()));
    }
  } finally {
    reader.close();
  }
  return result;
}
 
开发者ID:naver,项目名称:hadoop,代码行数:28,代码来源:TestFixedLengthInputFormat.java

示例9: validateSetupGenDC

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
/**
 * Validate setupGenerateDistCacheData by validating <li>permissions of the
 * distributed cache directories and <li>content of the generated sequence
 * file. This includes validation of dist cache file paths and their file
 * sizes.
 */
private void validateSetupGenDC(Configuration jobConf, long[] sortedFileSizes)
    throws IOException, InterruptedException {
  // build things needed for validation
  long sumOfFileSizes = 0;
  for (int i = 0; i < sortedFileSizes.length; i++) {
    sumOfFileSizes += sortedFileSizes[i];
  }

  FileSystem fs = FileSystem.get(jobConf);
  assertEquals("Number of distributed cache files to be generated is wrong.",
      sortedFileSizes.length,
      jobConf.getInt(GenerateDistCacheData.GRIDMIX_DISTCACHE_FILE_COUNT, -1));
  assertEquals("Total size of dist cache files to be generated is wrong.",
      sumOfFileSizes,
      jobConf.getLong(GenerateDistCacheData.GRIDMIX_DISTCACHE_BYTE_COUNT, -1));
  Path filesListFile = new Path(
      jobConf.get(GenerateDistCacheData.GRIDMIX_DISTCACHE_FILE_LIST));
  FileStatus stat = fs.getFileStatus(filesListFile);
  assertEquals("Wrong permissions of dist Cache files list file "
      + filesListFile, new FsPermission((short) 0644), stat.getPermission());

  InputSplit split = new FileSplit(filesListFile, 0, stat.getLen(),
      (String[]) null);
  TaskAttemptContext taskContext = MapReduceTestUtil
      .createDummyMapTaskAttemptContext(jobConf);
  RecordReader<LongWritable, BytesWritable> reader = new GenerateDistCacheData.GenDCDataFormat()
      .createRecordReader(split, taskContext);
  MapContext<LongWritable, BytesWritable, NullWritable, BytesWritable> mapContext = new MapContextImpl<LongWritable, BytesWritable, NullWritable, BytesWritable>(
      jobConf, taskContext.getTaskAttemptID(), reader, null, null,
      MapReduceTestUtil.createDummyReporter(), split);
  reader.initialize(split, mapContext);

  // start validating setupGenerateDistCacheData
  doValidateSetupGenDC(reader, fs, sortedFileSizes);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:42,代码来源:TestDistCacheEmulation.java

示例10: checkFormat

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
void checkFormat(Job job, int expectedN, int lastN) 
    throws IOException, InterruptedException {
  NLineInputFormat format = new NLineInputFormat();
  List<InputSplit> splits = format.getSplits(job);
  int count = 0;
  for (int i = 0; i < splits.size(); i++) {
    assertEquals("There are no split locations", 0,
                 splits.get(i).getLocations().length);
    TaskAttemptContext context = MapReduceTestUtil.
      createDummyMapTaskAttemptContext(job.getConfiguration());
    RecordReader<LongWritable, Text> reader = format.createRecordReader(
      splits.get(i), context);
    Class<?> clazz = reader.getClass();
    assertEquals("reader class is LineRecordReader.", 
      LineRecordReader.class, clazz);
    MapContext<LongWritable, Text, LongWritable, Text> mcontext = 
      new MapContextImpl<LongWritable, Text, LongWritable, Text>(
        job.getConfiguration(), context.getTaskAttemptID(), reader, null,
        null, MapReduceTestUtil.createDummyReporter(), splits.get(i));
    reader.initialize(splits.get(i), mcontext);
       
    try {
      count = 0;
      while (reader.nextKeyValue()) {
        count++;
      }
    } finally {
      reader.close();
    }
    if ( i == splits.size() - 1) {
      assertEquals("number of lines in split(" + i + ") is wrong" ,
                   lastN, count);
    } else {
      assertEquals("number of lines in split(" + i + ") is wrong" ,
                   expectedN, count);
    }
  }
}
 
开发者ID:hopshadoop,项目名称:hops,代码行数:39,代码来源:TestNLineInputFormat.java

示例11: testBinary

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
public void testBinary() throws IOException, InterruptedException {
  Job job = Job.getInstance();
  FileSystem fs = FileSystem.getLocal(job.getConfiguration());
  Path dir = new Path(System.getProperty("test.build.data",".") + "/mapred");
  Path file = new Path(dir, "testbinary.seq");
  Random r = new Random();
  long seed = r.nextLong();
  r.setSeed(seed);

  fs.delete(dir, true);
  FileInputFormat.setInputPaths(job, dir);

  Text tkey = new Text();
  Text tval = new Text();

  SequenceFile.Writer writer = new SequenceFile.Writer(fs,
    job.getConfiguration(), file, Text.class, Text.class);
  try {
    for (int i = 0; i < RECORDS; ++i) {
      tkey.set(Integer.toString(r.nextInt(), 36));
      tval.set(Long.toString(r.nextLong(), 36));
      writer.append(tkey, tval);
    }
  } finally {
    writer.close();
  }
  TaskAttemptContext context = MapReduceTestUtil.
    createDummyMapTaskAttemptContext(job.getConfiguration());
  InputFormat<BytesWritable,BytesWritable> bformat =
    new SequenceFileAsBinaryInputFormat();

  int count = 0;
  r.setSeed(seed);
  BytesWritable bkey = new BytesWritable();
  BytesWritable bval = new BytesWritable();
  Text cmpkey = new Text();
  Text cmpval = new Text();
  DataInputBuffer buf = new DataInputBuffer();
  FileInputFormat.setInputPaths(job, file);
  for (InputSplit split : bformat.getSplits(job)) {
    RecordReader<BytesWritable, BytesWritable> reader =
          bformat.createRecordReader(split, context);
    MapContext<BytesWritable, BytesWritable, BytesWritable, BytesWritable> 
      mcontext = new MapContextImpl<BytesWritable, BytesWritable,
        BytesWritable, BytesWritable>(job.getConfiguration(), 
        context.getTaskAttemptID(), reader, null, null, 
        MapReduceTestUtil.createDummyReporter(), 
        split);
    reader.initialize(split, mcontext);
    try {
      while (reader.nextKeyValue()) {
        bkey = reader.getCurrentKey();
        bval = reader.getCurrentValue();
        tkey.set(Integer.toString(r.nextInt(), 36));
        tval.set(Long.toString(r.nextLong(), 36));
        buf.reset(bkey.getBytes(), bkey.getLength());
        cmpkey.readFields(buf);
        buf.reset(bval.getBytes(), bval.getLength());
        cmpval.readFields(buf);
        assertTrue(
          "Keys don't match: " + "*" + cmpkey.toString() + ":" +
          tkey.toString() + "*",
          cmpkey.toString().equals(tkey.toString()));
        assertTrue(
          "Vals don't match: " + "*" + cmpval.toString() + ":" +
          tval.toString() + "*",
          cmpval.toString().equals(tval.toString()));
        ++count;
      }
    } finally {
      reader.close();
    }
  }
  assertEquals("Some records not found", RECORDS, count);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:76,代码来源:TestMRSequenceFileAsBinaryInputFormat.java

示例12: testFormat

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
@Test(timeout=10000)
public void testFormat() throws IOException, InterruptedException {
  Job job = Job.getInstance(conf);

  Random random = new Random();
  long seed = random.nextLong();
  random.setSeed(seed);

  localFs.delete(workDir, true);
  FileInputFormat.setInputPaths(job, workDir);

  final int length = 10000;
  final int numFiles = 10;

  // create files with a variety of lengths
  createFiles(length, numFiles, random, job);

  TaskAttemptContext context = MapReduceTestUtil.
    createDummyMapTaskAttemptContext(job.getConfiguration());
  // create a combine split for the files
  InputFormat<IntWritable,BytesWritable> format =
    new CombineSequenceFileInputFormat<IntWritable,BytesWritable>();
  for (int i = 0; i < 3; i++) {
    int numSplits =
      random.nextInt(length/(SequenceFile.SYNC_INTERVAL/20)) + 1;
    LOG.info("splitting: requesting = " + numSplits);
    List<InputSplit> splits = format.getSplits(job);
    LOG.info("splitting: got =        " + splits.size());

    // we should have a single split as the length is comfortably smaller than
    // the block size
    assertEquals("We got more than one splits!", 1, splits.size());
    InputSplit split = splits.get(0);
    assertEquals("It should be CombineFileSplit",
      CombineFileSplit.class, split.getClass());

    // check the split
    BitSet bits = new BitSet(length);
    RecordReader<IntWritable,BytesWritable> reader =
      format.createRecordReader(split, context);
    MapContext<IntWritable,BytesWritable,IntWritable,BytesWritable> mcontext =
      new MapContextImpl<IntWritable,BytesWritable,IntWritable,BytesWritable>(job.getConfiguration(),
      context.getTaskAttemptID(), reader, null, null,
      MapReduceTestUtil.createDummyReporter(), split);
    reader.initialize(split, mcontext);
    assertEquals("reader class is CombineFileRecordReader.",
      CombineFileRecordReader.class, reader.getClass());

    try {
      while (reader.nextKeyValue()) {
        IntWritable key = reader.getCurrentKey();
        BytesWritable value = reader.getCurrentValue();
        assertNotNull("Value should not be null.", value);
        final int k = key.get();
        LOG.debug("read " + k);
        assertFalse("Key in multiple partitions.", bits.get(k));
        bits.set(k);
      }
    } finally {
      reader.close();
    }
    assertEquals("Some keys in no partition.", length, bits.cardinality());
  }
}
 
开发者ID:naver,项目名称:hadoop,代码行数:65,代码来源:TestCombineSequenceFileInputFormat.java

示例13: testFormat

import org.apache.hadoop.mapreduce.MapReduceTestUtil; //导入方法依赖的package包/类
@Test(timeout=10000)
public void testFormat() throws Exception {
  Job job = Job.getInstance(new Configuration(defaultConf));

  Random random = new Random();
  long seed = random.nextLong();
  LOG.info("seed = " + seed);
  random.setSeed(seed);

  localFs.delete(workDir, true);
  FileInputFormat.setInputPaths(job, workDir);

  final int length = 10000;
  final int numFiles = 10;

  // create files with various lengths
  createFiles(length, numFiles, random);

  // create a combined split for the files
  CombineTextInputFormat format = new CombineTextInputFormat();
  for (int i = 0; i < 3; i++) {
    int numSplits = random.nextInt(length/20) + 1;
    LOG.info("splitting: requesting = " + numSplits);
    List<InputSplit> splits = format.getSplits(job);
    LOG.info("splitting: got =        " + splits.size());

    // we should have a single split as the length is comfortably smaller than
    // the block size
    assertEquals("We got more than one splits!", 1, splits.size());
    InputSplit split = splits.get(0);
    assertEquals("It should be CombineFileSplit",
      CombineFileSplit.class, split.getClass());

    // check the split
    BitSet bits = new BitSet(length);
    LOG.debug("split= " + split);
    TaskAttemptContext context = MapReduceTestUtil.
      createDummyMapTaskAttemptContext(job.getConfiguration());
    RecordReader<LongWritable, Text> reader =
      format.createRecordReader(split, context);
    assertEquals("reader class is CombineFileRecordReader.",
      CombineFileRecordReader.class, reader.getClass());
    MapContext<LongWritable,Text,LongWritable,Text> mcontext =
      new MapContextImpl<LongWritable,Text,LongWritable,Text>(job.getConfiguration(),
      context.getTaskAttemptID(), reader, null, null,
      MapReduceTestUtil.createDummyReporter(), split);
    reader.initialize(split, mcontext);

    try {
      int count = 0;
      while (reader.nextKeyValue()) {
        LongWritable key = reader.getCurrentKey();
        assertNotNull("Key should not be null.", key);
        Text value = reader.getCurrentValue();
        final int v = Integer.parseInt(value.toString());
        LOG.debug("read " + v);
        assertFalse("Key in multiple partitions.", bits.get(v));
        bits.set(v);
        count++;
      }
      LOG.debug("split=" + split + " count=" + count);
    } finally {
      reader.close();
    }
    assertEquals("Some keys in no partition.", length, bits.cardinality());
  }
}
 
开发者ID:naver,项目名称:hadoop,代码行数:68,代码来源:TestCombineTextInputFormat.java


注:本文中的org.apache.hadoop.mapreduce.MapReduceTestUtil.createDummyMapTaskAttemptContext方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。