本文整理汇总了Java中org.apache.hadoop.io.LongWritable.get方法的典型用法代码示例。如果您正苦于以下问题:Java LongWritable.get方法的具体用法?Java LongWritable.get怎么用?Java LongWritable.get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.hadoop.io.LongWritable
的用法示例。
在下文中一共展示了LongWritable.get方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: run
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
@Override
public void run() {
for (int i = 0; i < count; i++) {
try {
final long param = RANDOM.nextLong();
LongWritable value = call(client, param, server, conf);
if (value.get() != param) {
LOG.fatal("Call failed!");
failed = true;
break;
}
} catch (Exception e) {
LOG.fatal("Caught: " + StringUtils.stringifyException(e));
failed = true;
}
}
}
示例2: getSplits
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
@Override
public List<InputSplit> getSplits(JobContext jobCtxt) throws IOException {
final JobConf jobConf = new JobConf(jobCtxt.getConfiguration());
final JobClient client = new JobClient(jobConf);
ClusterStatus stat = client.getClusterStatus(true);
int numTrackers = stat.getTaskTrackers();
final int fileCount = jobConf.getInt(GRIDMIX_DISTCACHE_FILE_COUNT, -1);
// Total size of distributed cache files to be generated
final long totalSize = jobConf.getLong(GRIDMIX_DISTCACHE_BYTE_COUNT, -1);
// Get the path of the special file
String distCacheFileList = jobConf.get(GRIDMIX_DISTCACHE_FILE_LIST);
if (fileCount < 0 || totalSize < 0 || distCacheFileList == null) {
throw new RuntimeException("Invalid metadata: #files (" + fileCount
+ "), total_size (" + totalSize + "), filelisturi ("
+ distCacheFileList + ")");
}
Path sequenceFile = new Path(distCacheFileList);
FileSystem fs = sequenceFile.getFileSystem(jobConf);
FileStatus srcst = fs.getFileStatus(sequenceFile);
// Consider the number of TTs * mapSlotsPerTracker as number of mappers.
int numMapSlotsPerTracker = jobConf.getInt(TTConfig.TT_MAP_SLOTS, 2);
int numSplits = numTrackers * numMapSlotsPerTracker;
List<InputSplit> splits = new ArrayList<InputSplit>(numSplits);
LongWritable key = new LongWritable();
BytesWritable value = new BytesWritable();
// Average size of data to be generated by each map task
final long targetSize = Math.max(totalSize / numSplits,
DistributedCacheEmulator.AVG_BYTES_PER_MAP);
long splitStartPosition = 0L;
long splitEndPosition = 0L;
long acc = 0L;
long bytesRemaining = srcst.getLen();
SequenceFile.Reader reader = null;
try {
reader = new SequenceFile.Reader(fs, sequenceFile, jobConf);
while (reader.next(key, value)) {
// If adding this file would put this split past the target size,
// cut the last split and put this file in the next split.
if (acc + key.get() > targetSize && acc != 0) {
long splitSize = splitEndPosition - splitStartPosition;
splits.add(new FileSplit(
sequenceFile, splitStartPosition, splitSize, (String[])null));
bytesRemaining -= splitSize;
splitStartPosition = splitEndPosition;
acc = 0L;
}
acc += key.get();
splitEndPosition = reader.getPosition();
}
} finally {
if (reader != null) {
reader.close();
}
}
if (bytesRemaining != 0) {
splits.add(new FileSplit(
sequenceFile, splitStartPosition, bytesRemaining, (String[])null));
}
return splits;
}
示例3: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
/**
* Emits random words sequence of desired size. Note that the desired output
* size is passed as the value parameter to this map.
*/
@Override
public void map(NullWritable key, LongWritable value, Context context)
throws IOException, InterruptedException {
//TODO Control the extra data written ..
//TODO Should the key\tvalue\n be considered for measuring size?
// Can counters like BYTES_WRITTEN be used? What will be the value of
// such counters in LocalJobRunner?
for (long bytes = value.get(); bytes > 0;) {
String randomKey = rtg.getRandomWord();
String randomValue = rtg.getRandomWord();
context.write(new Text(randomKey), new Text(randomValue));
bytes -= (randomValue.getBytes(charsetUTF8).length +
randomKey.getBytes(charsetUTF8).length);
}
}
示例4: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
@Override
public void map(LongWritable key, BytesWritable value, Context context)
throws IOException, InterruptedException {
String fileName = new String(value.getBytes(), 0,
value.getLength(), charsetUTF8);
Path path = new Path(fileName);
FSDataOutputStream dos =
FileSystem.create(fs, path, new FsPermission(GRIDMIX_DISTCACHE_FILE_PERM));
int size = 0;
for (long bytes = key.get(); bytes > 0; bytes -= size) {
r.nextBytes(val.getBytes());
size = (int)Math.min(val.getLength(), bytes);
dos.write(val.getBytes(), 0, size);// Write to distCache file
}
dos.close();
}
示例5: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
/**
* Map file name and offset into statistical data.
* <p>
* The map task is to get the
* <tt>key</tt>, which contains the file name, and the
* <tt>value</tt>, which is the offset within the file.
*
* The parameters are passed to the abstract method
* {@link #doIO(Reporter,String,long)}, which performs the io operation,
* usually read or write data, and then
* {@link #collectStats(OutputCollector,String,long,Object)}
* is called to prepare stat data for a subsequent reducer.
*/
public void map(Text key,
LongWritable value,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
String name = key.toString();
long longValue = value.get();
reporter.setStatus("starting " + name + " ::host = " + hostName);
this.stream = getIOStream(name);
T statValue = null;
long tStart = System.currentTimeMillis();
try {
statValue = doIO(reporter, name, longValue);
} finally {
if(stream != null) stream.close();
}
long tEnd = System.currentTimeMillis();
long execTime = tEnd - tStart;
collectStats(output, name, execTime, statValue);
reporter.setStatus("finished " + name + " ::host = " + hostName);
}
示例6: reduce
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
@Override
protected void reduce(LongWritable key, Iterable<indexToWordWritable> values, Context context) throws IOException, InterruptedException {
if(key.get()<0) {
for (indexToWordWritable value : values) {
String word = value.getWord();
if(!wordToIndex.containsKey(word)) {
wordToIndex.put(word, wordToIndex.size());
}
}
} else {
for(indexToWordWritable words : values) {
context.write(new twoDimensionIndexWritable(m, words.getIndex()), new Text(words.getWord()));
}
log.info("m: {}",m);
m++;
}
}
示例7: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
/** Compute the (offset+1)th to (offset+length)th digits. */
protected void map(LongWritable offset, IntWritable length,
final Context context) throws IOException, InterruptedException {
LOG.info("offset=" + offset + ", length=" + length);
// compute digits
final byte[] bytes = new byte[length.get() >> 1];
long d = offset.get();
for (int i = 0; i < bytes.length; d += 4) {
final long digits = hexDigits(d);
bytes[i++] = (byte) (digits >> 8);
bytes[i++] = (byte) digits;
}
// output map results
context.write(offset, new BytesWritable(bytes));
}
示例8: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
public void map(LongWritable row, NullWritable ignored,
Context context) throws IOException, InterruptedException {
if (rand == null) {
rowId = new Unsigned16(row.get());
rand = Random16.skipAhead(rowId);
checksumCounter = context.getCounter(Counters.CHECKSUM);
}
Random16.nextRand(rand);
GenSort.generateRecord(buffer, rand, rowId);
key.set(buffer, 0, TeraInputFormat.KEY_LENGTH);
value.set(buffer, TeraInputFormat.KEY_LENGTH,
TeraInputFormat.VALUE_LENGTH);
context.write(key, value);
crc32.reset();
crc32.update(buffer, 0,
TeraInputFormat.KEY_LENGTH + TeraInputFormat.VALUE_LENGTH);
checksum.set(crc32.getValue());
total.add(checksum);
rowId.add(ONE);
}
示例9: reduce
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
@Override
protected void reduce(LongWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
int m = context.getConfiguration().getInt("mw", -1);
double[] ai = new double[m];
double[] bi = new double[m];
int i = (int)key.get() - 1;
for (Text value : values) {
if (value.toString().contains("\t")) {
String[] keyVal = value.toString().split("\\t");
ai[Integer.parseInt(keyVal[0]) - 1] = Double.parseDouble(keyVal[1]);
} else {
String[] vals = value.toString().split(",");
for (int j = 0; j < m; j++) {
bi[j] = Double.parseDouble(vals[j]);
}
}
}
double difference = 0d;
for (int j = 0; j < m; j++) {
difference += Math.pow(ai[j] - bi[j], 2d);
}
context.write(new LongWritable(i + 1), new Text(difference + ""));
}
示例10: reduce
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
@Override
protected void reduce(LongWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
int k = context.getConfiguration().getInt("k", -1);
String fpath = context.getConfiguration().get("mpath");
String datLoc = context.getConfiguration().get("datLoc", "od");
String wd = context.getConfiguration().get(datLoc);
Path file = new Path(wd, fpath);
FileSystem fs = file.getFileSystem(new Configuration());
FSDataInputStream ds = fs.open(file);
long start = (key.get() - 1) * 8 * (k + 1);
ds.seek(start + 8);
double[] wi = new double[k];
for (int counter = 0; counter < k; counter++) {
wi[counter] = ds.readDouble();
}
ds.close();
for (Text value : values) {
String[] keyVal = value.toString().split("\\t");
long j = Long.parseLong(keyVal[0]);
double aij = Double.parseDouble(keyVal[1]);
StringBuilder result = new StringBuilder();
for (int cou = 0; cou < k; cou++) {
result.append(aij * wi[cou]);
if (cou < k) {
result.append(",");
}
}
context.write(new LongWritable(j), new Text(result.toString()));
}
}
示例11: doValidateSetupGenDC
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
/**
* Validate setupGenerateDistCacheData by validating <li>permissions of the
* distributed cache directory and <li>content of the generated sequence file.
* This includes validation of dist cache file paths and their file sizes.
*/
private void doValidateSetupGenDC(
RecordReader<LongWritable, BytesWritable> reader, FileSystem fs,
long[] sortedFileSizes) throws IOException, InterruptedException {
// Validate permissions of dist cache directory
Path distCacheDir = dce.getDistributedCacheDir();
assertEquals(
"Wrong permissions for distributed cache dir " + distCacheDir,
fs.getFileStatus(distCacheDir).getPermission().getOtherAction()
.and(FsAction.EXECUTE), FsAction.EXECUTE);
// Validate the content of the sequence file generated by
// dce.setupGenerateDistCacheData().
LongWritable key = new LongWritable();
BytesWritable val = new BytesWritable();
for (int i = 0; i < sortedFileSizes.length; i++) {
assertTrue("Number of files written to the sequence file by "
+ "setupGenerateDistCacheData is less than the expected.",
reader.nextKeyValue());
key = reader.getCurrentKey();
val = reader.getCurrentValue();
long fileSize = key.get();
String file = new String(val.getBytes(), 0, val.getLength());
// Dist Cache files should be sorted based on file size.
assertEquals("Dist cache file size is wrong.", sortedFileSizes[i],
fileSize);
// Validate dist cache file path.
// parent dir of dist cache file
Path parent = new Path(file).getParent().makeQualified(fs.getUri(),fs.getWorkingDirectory());
// should exist in dist cache dir
assertTrue("Public dist cache file path is wrong.",
distCacheDir.equals(parent));
}
}
示例12: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
@Override
protected void map(LongWritable key, LongWritable value, Context context)
throws IOException, InterruptedException {
long chainId = value.get();
LOG.info("Starting mapper with chainId:" + chainId);
byte[] chainIdArray = Bytes.toBytes(chainId);
long currentRow = 0;
long chainLength = context.getConfiguration().getLong(CHAIN_LENGTH_KEY, CHAIN_LENGTH);
long nextRow = getNextRow(0, chainLength);
for (long i = 0; i < chainLength; i++) {
byte[] rk = Bytes.toBytes(currentRow);
// Next link in the chain.
KeyValue linkKv = new KeyValue(rk, CHAIN_FAM, chainIdArray, Bytes.toBytes(nextRow));
// What link in the chain this is.
KeyValue sortKv = new KeyValue(rk, SORT_FAM, chainIdArray, Bytes.toBytes(i));
// Added data so that large stores are created.
KeyValue dataKv = new KeyValue(rk, DATA_FAM, chainIdArray,
Bytes.toBytes(RandomStringUtils.randomAlphabetic(50))
);
// Emit the key values.
context.write(new ImmutableBytesWritable(rk), linkKv);
context.write(new ImmutableBytesWritable(rk), sortKv);
context.write(new ImmutableBytesWritable(rk), dataKv);
// Move to the next row.
currentRow = nextRow;
nextRow = getNextRow(i+1, chainLength);
}
}
示例13: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
public void map(Text key, LongWritable value,
OutputCollector<Text, LongWritable> collector,
Reporter reporter)
throws IOException {
String name = key.toString();
long size = value.get();
long seed = Long.parseLong(name);
random.setSeed(seed);
reporter.setStatus("creating " + name);
// write to temp file initially to permit parallel execution
Path tempFile = new Path(DATA_DIR, name+suffix);
OutputStream out = fs.create(tempFile);
long written = 0;
try {
while (written < size) {
if (fastCheck) {
Arrays.fill(buffer, (byte)random.nextInt(Byte.MAX_VALUE));
} else {
random.nextBytes(buffer);
}
long remains = size - written;
int length = (remains<=buffer.length) ? (int)remains : buffer.length;
out.write(buffer, 0, length);
written += length;
reporter.setStatus("writing "+name+"@"+written+"/"+size);
}
} finally {
out.close();
}
// rename to final location
fs.rename(tempFile, new Path(DATA_DIR, name));
collector.collect(new Text("bytes"), new LongWritable(written));
reporter.setStatus("wrote " + name);
}
示例14: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
@Override
public void map(NullWritable key, LongWritable value, Context context)
throws IOException, InterruptedException {
for (long bytes = value.get(); bytes > 0; bytes -= val.getLength()) {
r.nextBytes(val.getBytes());
val.setSize((int)Math.min(val.getLength(), bytes));
context.write(key, val);
}
}
示例15: map
import org.apache.hadoop.io.LongWritable; //导入方法依赖的package包/类
/** Map method.
* @param offset samples starting from the (offset+1)th sample.
* @param size the number of samples for this map
* @param context output {ture->numInside, false->numOutside}
*/
public void map(LongWritable offset,
LongWritable size,
Context context)
throws IOException, InterruptedException {
final HaltonSequence haltonsequence = new HaltonSequence(offset.get());
long numInside = 0L;
long numOutside = 0L;
for(long i = 0; i < size.get(); ) {
//generate points in a unit square
final double[] point = haltonsequence.nextPoint();
//count points inside/outside of the inscribed circle of the square
final double x = point[0] - 0.5;
final double y = point[1] - 0.5;
if (x*x + y*y > 0.25) {
numOutside++;
} else {
numInside++;
}
//report status
i++;
if (i % 1000 == 0) {
context.setStatus("Generated " + i + " samples.");
}
}
//output map results
context.write(new BooleanWritable(true), new LongWritable(numInside));
context.write(new BooleanWritable(false), new LongWritable(numOutside));
}