当前位置: 首页>>代码示例>>Java>>正文


Java TimeCharacteristic.ProcessingTime方法代码示例

本文整理汇总了Java中org.apache.flink.streaming.api.TimeCharacteristic.ProcessingTime方法的典型用法代码示例。如果您正苦于以下问题:Java TimeCharacteristic.ProcessingTime方法的具体用法?Java TimeCharacteristic.ProcessingTime怎么用?Java TimeCharacteristic.ProcessingTime使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.flink.streaming.api.TimeCharacteristic的用法示例。


在下文中一共展示了TimeCharacteristic.ProcessingTime方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: AbstractSiddhiOperator

import org.apache.flink.streaming.api.TimeCharacteristic; //导入方法依赖的package包/类
/**
 * @param siddhiPlan Siddhi CEP  Execution Plan
 */
public AbstractSiddhiOperator(SiddhiOperatorContext siddhiPlan) {
	validate(siddhiPlan);
	this.executionExpression = siddhiPlan.getFinalExecutionPlan();
	this.siddhiPlan = siddhiPlan;
	this.isProcessingTime = this.siddhiPlan.getTimeCharacteristic() == TimeCharacteristic.ProcessingTime;
	this.streamRecordSerializers = new HashMap<>();

	registerStreamRecordSerializers();
}
 
开发者ID:haoch,项目名称:flink-siddhi,代码行数:13,代码来源:AbstractSiddhiOperator.java

示例2: AbstractSiddhiOperator

import org.apache.flink.streaming.api.TimeCharacteristic; //导入方法依赖的package包/类
/**
 * @param siddhiPlan Siddhi CEP  Execution Plan
 */
public AbstractSiddhiOperator(SiddhiOperatorContext siddhiPlan) {
    validate(siddhiPlan);
    this.executionExpression = siddhiPlan.getFinalExecutionPlan();
    this.siddhiPlan = siddhiPlan;
    this.isProcessingTime = this.siddhiPlan.getTimeCharacteristic() == TimeCharacteristic.ProcessingTime;
    this.streamRecordSerializers = new HashMap<>();

    registerStreamRecordSerializers();
}
 
开发者ID:apache,项目名称:bahir-flink,代码行数:13,代码来源:AbstractSiddhiOperator.java

示例3: createPatternStream

import org.apache.flink.streaming.api.TimeCharacteristic; //导入方法依赖的package包/类
private static <IN, OUT, K> SingleOutputStreamOperator<OUT> createPatternStream(
		final DataStream<IN> inputStream,
		final Pattern<IN, ?> pattern,
		final TypeInformation<OUT> outTypeInfo,
		final boolean timeoutHandling,
		final EventComparator<IN> comparator,
		final OperatorBuilder<IN, OUT> operatorBuilder) {
	final TypeSerializer<IN> inputSerializer = inputStream.getType().createSerializer(inputStream.getExecutionConfig());

	// check whether we use processing time
	final boolean isProcessingTime = inputStream.getExecutionEnvironment().getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime;

	// compile our pattern into a NFAFactory to instantiate NFAs later on
	final NFACompiler.NFAFactory<IN> nfaFactory = NFACompiler.compileFactory(pattern, inputSerializer, timeoutHandling);

	final SingleOutputStreamOperator<OUT> patternStream;

	if (inputStream instanceof KeyedStream) {
		KeyedStream<IN, K> keyedStream = (KeyedStream<IN, K>) inputStream;

		patternStream = keyedStream.transform(
			operatorBuilder.getKeyedOperatorName(),
			outTypeInfo,
			operatorBuilder.build(
				inputSerializer,
				isProcessingTime,
				nfaFactory,
				comparator,
				pattern.getAfterMatchSkipStrategy()));
	} else {
		KeySelector<IN, Byte> keySelector = new NullByteKeySelector<>();

		patternStream = inputStream.keyBy(keySelector).transform(
			operatorBuilder.getOperatorName(),
			outTypeInfo,
			operatorBuilder.build(
				inputSerializer,
				isProcessingTime,
				nfaFactory,
				comparator,
				pattern.getAfterMatchSkipStrategy()
			)).forceNonParallel();
	}

	return patternStream;
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:47,代码来源:CEPOperatorUtils.java

示例4: select

import org.apache.flink.streaming.api.TimeCharacteristic; //导入方法依赖的package包/类
/**
 * Applies a select function to the detected pattern sequence or query results. For each pattern sequence or query result the
 * provided {@link EsperSelectFunction} is called. The pattern select function can produce
 * exactly one resulting element.
 *
 * @param esperSelectFunction The pattern select function which is called for each detected pattern sequence.
 * @param <R> Type of the resulting elements
 * @return {@link DataStream} which contains the resulting elements from the pattern select
 *         function.
 */
public <R> SingleOutputStreamOperator<R> select(EsperSelectFunction<R> esperSelectFunction) {
    KeySelector<IN, Byte> keySelector = new NullByteKeySelector<>();

    SingleOutputStreamOperator<R> patternStream;

    TypeInformation<R> typeInformation = getTypeInformation(esperSelectFunction);

    final boolean isProcessingTime = inputStream.getExecutionEnvironment().getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime;
    patternStream = inputStream.keyBy(keySelector).transform("SelectEsperOperator", typeInformation, new SelectEsperStreamOperator<Byte, IN, R>(inputStream.getType(), esperSelectFunction, isProcessingTime, esperQuery));

    return patternStream;
}
 
开发者ID:phil3k3,项目名称:flink-esper,代码行数:23,代码来源:EsperStream.java

示例5: timeWindowAll

import org.apache.flink.streaming.api.TimeCharacteristic; //导入方法依赖的package包/类
/**
 * Windows this {@code DataStream} into tumbling time windows.
 *
 * <p>This is a shortcut for either {@code .window(TumblingEventTimeWindows.of(size))} or
 * {@code .window(TumblingProcessingTimeWindows.of(size))} depending on the time characteristic
 * set using
 *
 * <p>Note: This operation can be inherently non-parallel since all elements have to pass through
 * the same operator instance. (Only for special cases, such as aligned time windows is
 * it possible to perform this operation in parallel).
 *
 * {@link org.apache.flink.streaming.api.environment.StreamExecutionEnvironment#setStreamTimeCharacteristic(org.apache.flink.streaming.api.TimeCharacteristic)}
 *
 * @param size The size of the window.
 */
public AllWindowedStream<T, TimeWindow> timeWindowAll(Time size) {
	if (environment.getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime) {
		return windowAll(TumblingProcessingTimeWindows.of(size));
	} else {
		return windowAll(TumblingEventTimeWindows.of(size));
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:23,代码来源:DataStream.java

示例6: timeWindow

import org.apache.flink.streaming.api.TimeCharacteristic; //导入方法依赖的package包/类
/**
 * Windows this {@code KeyedStream} into tumbling time windows.
 *
 * <p>This is a shortcut for either {@code .window(TumblingEventTimeWindows.of(size))} or
 * {@code .window(TumblingProcessingTimeWindows.of(size))} depending on the time characteristic
 * set using
 * {@link org.apache.flink.streaming.api.environment.StreamExecutionEnvironment#setStreamTimeCharacteristic(org.apache.flink.streaming.api.TimeCharacteristic)}
 *
 * @param size The size of the window.
 */
public WindowedStream<T, KEY, TimeWindow> timeWindow(Time size) {
	if (environment.getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime) {
		return window(TumblingProcessingTimeWindows.of(size));
	} else {
		return window(TumblingEventTimeWindows.of(size));
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:18,代码来源:KeyedStream.java

示例7: setStreamTimeCharacteristic

import org.apache.flink.streaming.api.TimeCharacteristic; //导入方法依赖的package包/类
/**
 * Sets the time characteristic for all streams create from this environment, e.g., processing
 * time, event time, or ingestion time.
 *
 * <p>If you set the characteristic to IngestionTime of EventTime this will set a default
 * watermark update interval of 200 ms. If this is not applicable for your application
 * you should change it using {@link ExecutionConfig#setAutoWatermarkInterval(long)}.
 *
 * @param characteristic The time characteristic.
 */
@PublicEvolving
public void setStreamTimeCharacteristic(TimeCharacteristic characteristic) {
	this.timeCharacteristic = Preconditions.checkNotNull(characteristic);
	if (characteristic == TimeCharacteristic.ProcessingTime) {
		getConfig().setAutoWatermarkInterval(0);
	} else {
		getConfig().setAutoWatermarkInterval(200);
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:20,代码来源:StreamExecutionEnvironment.java


注:本文中的org.apache.flink.streaming.api.TimeCharacteristic.ProcessingTime方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。