本文整理汇总了Java中org.apache.flink.api.java.DataSet.writeAsText方法的典型用法代码示例。如果您正苦于以下问题:Java DataSet.writeAsText方法的具体用法?Java DataSet.writeAsText怎么用?Java DataSet.writeAsText使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.flink.api.java.DataSet
的用法示例。
在下文中一共展示了DataSet.writeAsText方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testSerializeWithAvro
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testSerializeWithAvro() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().enableForceAvro();
Path in = new Path(inFile.getAbsoluteFile().toURI());
AvroInputFormat<User> users = new AvroInputFormat<User>(in, User.class);
DataSet<User> usersDS = env.createInput(users)
.map(new MapFunction<User, User>() {
@Override
public User map(User value) throws Exception {
Map<CharSequence, Long> ab = new HashMap<CharSequence, Long>(1);
ab.put("hehe", 12L);
value.setTypeMap(ab);
return value;
}
});
usersDS.writeAsText(resultPath);
env.execute("Simple Avro read job");
expected = "{\"name\": \"Alyssa\", \"favorite_number\": 256, \"favorite_color\": null, \"type_long_test\": null, \"type_double_test\": 123.45, \"type_null_test\": null, \"type_bool_test\": true, \"type_array_string\": [\"ELEMENT 1\", \"ELEMENT 2\"], \"type_array_boolean\": [true, false], \"type_nullable_array\": null, \"type_enum\": \"GREEN\", \"type_map\": {\"hehe\": 12}, \"type_fixed\": null, \"type_union\": null, \"type_nested\": {\"num\": 239, \"street\": \"Baker Street\", \"city\": \"London\", \"state\": \"London\", \"zip\": \"NW1 6XE\"}}\n" +
"{\"name\": \"Charlie\", \"favorite_number\": null, \"favorite_color\": \"blue\", \"type_long_test\": 1337, \"type_double_test\": 1.337, \"type_null_test\": null, \"type_bool_test\": false, \"type_array_string\": [], \"type_array_boolean\": [], \"type_nullable_array\": null, \"type_enum\": \"RED\", \"type_map\": {\"hehe\": 12}, \"type_fixed\": null, \"type_union\": null, \"type_nested\": {\"num\": 239, \"street\": \"Baker Street\", \"city\": \"London\", \"state\": \"London\", \"zip\": \"NW1 6XE\"}}\n";
}
示例2: main
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
public static void main(String... args) throws Exception {
File txtFile = new File("/tmp/test/file.txt");
File csvFile = new File("/tmp/test/file.csv");
File binFile = new File("/tmp/test/file.bin");
writeToFile(txtFile, "txt");
writeToFile(csvFile, "csv");
writeToFile(binFile, "bin");
final ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();
final TextInputFormat format = new TextInputFormat(new Path("/tmp/test"));
GlobFilePathFilter filesFilter = new GlobFilePathFilter(
Collections.singletonList("**"),
Arrays.asList("**/file.bin")
);
System.out.println(Arrays.toString(GlobFilePathFilter.class.getDeclaredFields()));
format.setFilesFilter(filesFilter);
DataSet<String> result = env.readFile(format, "/tmp");
result.writeAsText("/temp/out");
env.execute("GlobFilePathFilter-Test");
}
示例3: testSimpleAvroRead
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testSimpleAvroRead() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
Path in = new Path(inFile.getAbsoluteFile().toURI());
AvroInputFormat<User> users = new AvroInputFormat<User>(in, User.class);
DataSet<User> usersDS = env.createInput(users)
// null map type because the order changes in different JVMs (hard to test)
.map(new MapFunction<User, User>() {
@Override
public User map(User value) throws Exception {
value.setTypeMap(null);
return value;
}
});
usersDS.writeAsText(resultPath);
env.execute("Simple Avro read job");
expected = "{\"name\": \"Alyssa\", \"favorite_number\": 256, \"favorite_color\": null, \"type_long_test\": null, \"type_double_test\": 123.45, \"type_null_test\": null, \"type_bool_test\": true, \"type_array_string\": [\"ELEMENT 1\", \"ELEMENT 2\"], \"type_array_boolean\": [true, false], \"type_nullable_array\": null, \"type_enum\": \"GREEN\", \"type_map\": null, \"type_fixed\": null, \"type_union\": null, \"type_nested\": {\"num\": 239, \"street\": \"Baker Street\", \"city\": \"London\", \"state\": \"London\", \"zip\": \"NW1 6XE\"}}\n" +
"{\"name\": \"Charlie\", \"favorite_number\": null, \"favorite_color\": \"blue\", \"type_long_test\": 1337, \"type_double_test\": 1.337, \"type_null_test\": null, \"type_bool_test\": false, \"type_array_string\": [], \"type_array_boolean\": [], \"type_nullable_array\": null, \"type_enum\": \"RED\", \"type_map\": null, \"type_fixed\": null, \"type_union\": null, \"type_nested\": {\"num\": 239, \"street\": \"Baker Street\", \"city\": \"London\", \"state\": \"London\", \"zip\": \"NW1 6XE\"}}\n";
}
示例4: testKeySelection
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testKeySelection() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().enableObjectReuse();
Path in = new Path(inFile.getAbsoluteFile().toURI());
AvroInputFormat<User> users = new AvroInputFormat<User>(in, User.class);
DataSet<User> usersDS = env.createInput(users);
DataSet<Tuple2<String, Integer>> res = usersDS.groupBy("name").reduceGroup(new GroupReduceFunction<User, Tuple2<String, Integer>>() {
@Override
public void reduce(Iterable<User> values, Collector<Tuple2<String, Integer>> out) throws Exception {
for (User u : values) {
out.collect(new Tuple2<String, Integer>(u.getName().toString(), 1));
}
}
});
res.writeAsText(resultPath);
env.execute("Avro Key selection");
expected = "(Alyssa,1)\n(Charlie,1)\n";
}
示例5: testStandardCountingWithCombiner
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testStandardCountingWithCombiner() throws Exception{
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, IntWritable>> ds = HadoopTestData.getKVPairDataSet(env).
map(new Mapper1());
DataSet<Tuple2<IntWritable, IntWritable>> counts = ds.
groupBy(0).
reduceGroup(new HadoopReduceCombineFunction<IntWritable, IntWritable, IntWritable, IntWritable>(
new SumReducer(), new SumReducer()));
String resultPath = tempFolder.newFile().toURI().toString();
counts.writeAsText(resultPath);
env.execute();
String expected = "(0,5)\n"+
"(1,6)\n" +
"(2,6)\n" +
"(3,4)\n";
compareResultsByLinesInMemory(expected, resultPath);
}
示例6: testBranchingDisjointPlan
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
/**
*
* <pre>
* (SINK 3) (SINK 1) (SINK 2) (SINK 4)
* \ / \ /
* (SRC A) (SRC B)
* </pre>
*
* NOTE: this case is currently not caught by the compiler. we should enable the test once it is caught.
*/
@Test
public void testBranchingDisjointPlan() {
// construct the plan
final String out1Path = "file:///test/1";
final String out2Path = "file:///test/2";
final String out3Path = "file:///test/3";
final String out4Path = "file:///test/4";
// construct the plan
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(DEFAULT_PARALLELISM);
DataSet<Long> sourceA = env.generateSequence(0,1);
DataSet<Long> sourceB = env.generateSequence(0,1);
sourceA.writeAsText(out1Path);
sourceB.writeAsText(out2Path);
sourceA.writeAsText(out3Path);
sourceB.writeAsText(out4Path);
Plan plan = env.createProgramPlan();
compileNoStats(plan);
}
示例7: testUngroupedHadoopReducer
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testUngroupedHadoopReducer() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, IntWritable>> ds = HadoopTestData.getKVPairDataSet(env).
map(new Mapper2());
DataSet<Tuple2<IntWritable, IntWritable>> sum = ds.
reduceGroup(new HadoopReduceCombineFunction<IntWritable, IntWritable, IntWritable, IntWritable>(
new SumReducer(), new SumReducer()));
String resultPath = tempFolder.newFile().toURI().toString();
sum.writeAsText(resultPath);
env.execute();
String expected = "(0,231)\n";
compareResultsByLinesInMemory(expected, resultPath);
}
示例8: testCombiner
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testCombiner() throws Exception {
org.junit.Assume.assumeThat(mode, new IsEqual<TestExecutionMode>(TestExecutionMode.CLUSTER));
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, IntWritable>> ds = HadoopTestData.getKVPairDataSet(env).
map(new Mapper3());
DataSet<Tuple2<IntWritable, IntWritable>> counts = ds.
groupBy(0).
reduceGroup(new HadoopReduceCombineFunction<IntWritable, IntWritable, IntWritable, IntWritable>(
new SumReducer(), new KeyChangingReducer()));
String resultPath = tempFolder.newFile().toURI().toString();
counts.writeAsText(resultPath);
env.execute();
String expected = "(0,5)\n"+
"(1,6)\n" +
"(2,5)\n" +
"(3,5)\n";
compareResultsByLinesInMemory(expected, resultPath);
}
示例9: testField
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
private void testField(final String fieldName) throws Exception {
before();
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
Path in = new Path(inFile.getAbsoluteFile().toURI());
AvroInputFormat<User> users = new AvroInputFormat<User>(in, User.class);
DataSet<User> usersDS = env.createInput(users);
DataSet<Object> res = usersDS.groupBy(fieldName).reduceGroup(new GroupReduceFunction<User, Object>() {
@Override
public void reduce(Iterable<User> values, Collector<Object> out) throws Exception {
for (User u : values) {
out.collect(u.get(fieldName));
}
}
});
res.writeAsText(resultPath);
env.execute("Simple Avro read job");
// test if automatic registration of the Types worked
ExecutionConfig ec = env.getConfig();
Assert.assertTrue(ec.getRegisteredKryoTypes().contains(Fixed16.class));
if (fieldName.equals("name")) {
expected = "Alyssa\nCharlie";
} else if (fieldName.equals("type_enum")) {
expected = "GREEN\nRED\n";
} else if (fieldName.equals("type_double_test")) {
expected = "123.45\n1.337\n";
} else {
Assert.fail("Unknown field");
}
after();
}
示例10: testAggregatorWithParameterForIterateDelta
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testAggregatorWithParameterForIterateDelta() throws Exception {
/*
* Test aggregator with parameter for iterateDelta
*/
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(parallelism);
DataSet<Tuple2<Integer, Integer>> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env).map(new TupleMakerMap());
DeltaIteration<Tuple2<Integer, Integer>, Tuple2<Integer, Integer>> iteration = initialSolutionSet.iterateDelta(
initialSolutionSet, MAX_ITERATIONS, 0);
// register aggregator
LongSumAggregator aggr = new LongSumAggregatorWithParameter(4);
iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);
DataSet<Tuple2<Integer, Integer>> updatedDs = iteration.getWorkset().map(new AggregateMapDelta());
DataSet<Tuple2<Integer, Integer>> newElements = updatedDs.join(iteration.getSolutionSet())
.where(0).equalTo(0).flatMap(new UpdateFilter());
DataSet<Tuple2<Integer, Integer>> iterationRes = iteration.closeWith(newElements, newElements);
DataSet<Integer> result = iterationRes.map(new ProjectSecondMapper());
result.writeAsText(resultPath);
env.execute();
expected = "1\n" + "2\n" + "2\n" + "3\n" + "3\n"
+ "3\n" + "4\n" + "4\n" + "4\n" + "4\n"
+ "5\n" + "5\n" + "5\n" + "5\n" + "5\n";
}
示例11: testProgram
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Override
protected void testProgram() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = env.readTextFile(textPath);
DataSet<WCBase> counts = text
.flatMap(new Tokenizer())
.groupBy("word")
.reduce(new ReduceFunction<WCBase>() {
private static final long serialVersionUID = 1L;
public WCBase reduce(WCBase value1, WCBase value2) {
WC wc1 = (WC) value1;
WC wc2 = (WC) value2;
int c = wc1.secretCount.getCount() + wc2.secretCount.getCount();
wc1.secretCount.setCount(c);
return wc1;
}
})
.map(new MapFunction<WCBase, WCBase>() {
@Override
public WCBase map(WCBase value) throws Exception {
WC wc = (WC) value;
wc.count = wc.secretCount.getCount();
return wc;
}
});
counts.writeAsText(resultPath);
env.execute("WordCount with custom data types example");
}
示例12: testProgram
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Override
protected void testProgram() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> stringDs = env.fromElements("aa", "ab", "ac", "ad");
DataSet<String> flatMappedDs = stringDs.flatMap((s, out) -> out.collect(s.replace("a", "b")));
flatMappedDs.writeAsText(resultPath);
env.execute();
}
示例13: testSerializeWithAvro
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testSerializeWithAvro() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().enableForceAvro();
Path in = new Path(inFile.getAbsoluteFile().toURI());
AvroInputFormat<User> users = new AvroInputFormat<User>(in, User.class);
DataSet<User> usersDS = env.createInput(users)
// null map type because the order changes in different JVMs (hard to test)
.map(new MapFunction<User, User>() {
@Override
public User map(User value) throws Exception {
Map<CharSequence, Long> ab = new HashMap<CharSequence, Long>(1);
ab.put("hehe", 12L);
value.setTypeMap(ab);
return value;
}
});
usersDS.writeAsText(resultPath);
env.execute("Simple Avro read job");
expected = "{\"name\": \"Alyssa\", \"favorite_number\": 256, \"favorite_color\": null, \"type_long_test\": null, \"type_double_test\": 123.45, \"type_null_test\": null, \"type_bool_test\": true, \"type_array_string\": [\"ELEMENT 1\", \"ELEMENT 2\"], \"type_array_boolean\": [true, false], \"type_nullable_array\": null, \"type_enum\": \"GREEN\", \"type_map\": {\"hehe\": 12}, \"type_fixed\": null, \"type_union\": null, \"type_nested\": {\"num\": 239, \"street\": \"Baker Street\", \"city\": \"London\", \"state\": \"London\", \"zip\": \"NW1 6XE\"}}\n" +
"{\"name\": \"Charlie\", \"favorite_number\": null, \"favorite_color\": \"blue\", \"type_long_test\": 1337, \"type_double_test\": 1.337, \"type_null_test\": null, \"type_bool_test\": false, \"type_array_string\": [], \"type_array_boolean\": [], \"type_nullable_array\": null, \"type_enum\": \"RED\", \"type_map\": {\"hehe\": 12}, \"type_fixed\": null, \"type_union\": null, \"type_nested\": {\"num\": 239, \"street\": \"Baker Street\", \"city\": \"London\", \"state\": \"London\", \"zip\": \"NW1 6XE\"}}\n";
}
示例14: testNonPassingMapper
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testNonPassingMapper() throws Exception{
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, Text>> ds = HadoopTestData.getKVPairDataSet(env);
DataSet<Tuple2<IntWritable, Text>> nonPassingFlatMapDs = ds.
flatMap(new HadoopMapFunction<IntWritable, Text, IntWritable, Text>(new NonPassingMapper()));
String resultPath = tempFolder.newFile().toURI().toString();
nonPassingFlatMapDs.writeAsText(resultPath, FileSystem.WriteMode.OVERWRITE);
env.execute();
compareResultsByLinesInMemory("\n", resultPath);
}
示例15: testWithAvroGenericSer
import org.apache.flink.api.java.DataSet; //导入方法依赖的package包/类
@Test
public void testWithAvroGenericSer() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().enableForceAvro();
Path in = new Path(inFile.getAbsoluteFile().toURI());
AvroInputFormat<User> users = new AvroInputFormat<User>(in, User.class);
DataSet<User> usersDS = env.createInput(users);
DataSet<Tuple2<String, Integer>> res = usersDS.groupBy(new KeySelector<User, String>() {
@Override
public String getKey(User value) throws Exception {
return String.valueOf(value.getName());
}
}).reduceGroup(new GroupReduceFunction<User, Tuple2<String, Integer>>() {
@Override
public void reduce(Iterable<User> values, Collector<Tuple2<String, Integer>> out) throws Exception {
for(User u : values) {
out.collect(new Tuple2<String, Integer>(u.getName().toString(), 1));
}
}
});
res.writeAsText(resultPath);
env.execute("Avro Key selection");
expected = "(Charlie,1)\n(Alyssa,1)\n";
}