本文整理汇总了Java中org.apache.flink.api.common.JobExecutionResult.getNetRuntime方法的典型用法代码示例。如果您正苦于以下问题:Java JobExecutionResult.getNetRuntime方法的具体用法?Java JobExecutionResult.getNetRuntime怎么用?Java JobExecutionResult.getNetRuntime使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.flink.api.common.JobExecutionResult
的用法示例。
在下文中一共展示了JobExecutionResult.getNetRuntime方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testProgram
import org.apache.flink.api.common.JobExecutionResult; //导入方法依赖的package包/类
private void testProgram(
LocalFlinkMiniCluster localFlinkMiniCluster,
final int dataVolumeGb,
final boolean useForwarder,
final boolean isSlowSender,
final boolean isSlowReceiver,
final int parallelism) throws Exception {
JobExecutionResult jer = localFlinkMiniCluster.submitJobAndWait(
createJobGraph(
dataVolumeGb,
useForwarder,
isSlowSender,
isSlowReceiver,
parallelism),
false);
long dataVolumeMbit = dataVolumeGb * 8192;
long runtimeSecs = jer.getNetRuntime(TimeUnit.SECONDS);
int mbitPerSecond = (int) (((double) dataVolumeMbit) / runtimeSecs);
LOG.info(String.format("Test finished with throughput of %d MBit/s (runtime [secs]: %d, " +
"data volume [gb/mbits]: %d/%d)", mbitPerSecond, runtimeSecs, dataVolumeGb, dataVolumeMbit));
}
示例2: write
import org.apache.flink.api.common.JobExecutionResult; //导入方法依赖的package包/类
public static void write(final JobExecutionResult res, final String path) {
double elapsed = res.getNetRuntime(TimeUnit.NANOSECONDS);
long tuples = res.getAccumulatorResult("tuples");
double latency = elapsed / tuples;
PerformanceWriter.write(path, elapsed, latency);
}
示例3: run
import org.apache.flink.api.common.JobExecutionResult; //导入方法依赖的package包/类
@Override
public PipelineResult run(Pipeline pipeline) {
logWarningIfPCollectionViewHasNonDeterministicKeyCoder(pipeline);
MetricsEnvironment.setMetricsSupported(true);
LOG.info("Executing pipeline using FlinkRunner.");
FlinkPipelineExecutionEnvironment env = new FlinkPipelineExecutionEnvironment(options);
LOG.info("Translating pipeline to Flink program.");
env.translate(this, pipeline);
JobExecutionResult result;
try {
LOG.info("Starting execution of Flink program.");
result = env.executePipeline();
} catch (Exception e) {
LOG.error("Pipeline execution failed", e);
throw new RuntimeException("Pipeline execution failed", e);
}
if (result instanceof DetachedEnvironment.DetachedJobExecutionResult) {
LOG.info("Pipeline submitted in Detached mode");
return new FlinkDetachedRunnerResult();
} else {
LOG.info("Execution finished in {} msecs", result.getNetRuntime());
Map<String, Object> accumulators = result.getAllAccumulatorResults();
if (accumulators != null && !accumulators.isEmpty()) {
LOG.info("Final accumulator values:");
for (Map.Entry<String, Object> entry : result.getAllAccumulatorResults().entrySet()) {
LOG.info("{} : {}", entry.getKey(), entry.getValue());
}
}
return new FlinkRunnerResult(accumulators, result.getNetRuntime());
}
}
示例4: run
import org.apache.flink.api.common.JobExecutionResult; //导入方法依赖的package包/类
public FlinkRunnerResult run(Pipeline pipeline, int parallelism) {
if (parallelism <= 0 && parallelism != -1) {
throw new IllegalArgumentException("Parallelism must be positive or -1 for default");
}
LOG.info("Executing pipeline using the FlinkLocalPipelineRunner.");
ExecutionEnvironment env = parallelism == -1 ?
ExecutionEnvironment.createLocalEnvironment() :
ExecutionEnvironment.createLocalEnvironment(parallelism);
LOG.info("Translating pipeline to Flink program.");
FlinkTranslator translator = new FlinkTranslator(env);
translator.translate(pipeline);
LOG.info("Starting execution of Flink program.");
JobExecutionResult result;
try {
result = env.execute();
}
catch (Exception e) {
LOG.error("Pipeline execution failed", e);
throw new RuntimeException("Pipeline execution failed", e);
}
LOG.info("Execution finished in {} msecs", result.getNetRuntime());
Map<String, Object> accumulators = result.getAllAccumulatorResults();
if (accumulators != null && !accumulators.isEmpty()) {
LOG.info("Final aggregator values:");
for (Map.Entry<String, Object> entry : result.getAllAccumulatorResults().entrySet()) {
LOG.info("{} : {}", entry.getKey(), entry.getValue());
}
}
return new ExecutionRunnerResult(accumulators, result.getNetRuntime());
}
示例5: CentralizedWeightedMatching
import org.apache.flink.api.common.JobExecutionResult; //导入方法依赖的package包/类
public CentralizedWeightedMatching() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
// Source: http://grouplens.org/datasets/movielens/
@SuppressWarnings("serial")
DataStream<Edge<Long, Long>> edges = env
.readTextFile("movielens_10k_sorted.txt")
.map(new MapFunction<String, Edge<Long, Long>>() {
@Override
public Edge<Long, Long> map(String s) throws Exception {
String[] args = s.split("\t");
long src = Long.parseLong(args[0]);
long trg = Long.parseLong(args[1]) + 1000000;
long val = Long.parseLong(args[2]) * 10;
return new Edge<>(src, trg, val);
}
});
GraphStream<Long, NullValue, Long> graph = new SimpleEdgeStream<>(edges, env);
graph.getEdges()
.flatMap(new WeightedMatchingFlatMapper()).setParallelism(1)
.print().setParallelism(1);
JobExecutionResult res = env.execute("Distributed Merge Tree Sandbox");
long runtime = res.getNetRuntime();
System.out.println("Runtime: " + runtime);
}