本文整理汇总了Java中org.apache.commons.math3.util.ArithmeticUtils.factorial方法的典型用法代码示例。如果您正苦于以下问题:Java ArithmeticUtils.factorial方法的具体用法?Java ArithmeticUtils.factorial怎么用?Java ArithmeticUtils.factorial使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.util.ArithmeticUtils
的用法示例。
在下文中一共展示了ArithmeticUtils.factorial方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: taylor
import org.apache.commons.math3.util.ArithmeticUtils; //导入方法依赖的package包/类
/** Evaluate Taylor expansion of a derivative structure.
* @param ds array holding the derivative structure
* @param dsOffset offset of the derivative structure in its array
* @param delta parameters offsets (Δx, Δy, ...)
* @return value of the Taylor expansion at x + Δx, y + Δy, ...
* @throws MathArithmeticException if factorials becomes too large
*/
public double taylor(final double[] ds, final int dsOffset, final double ... delta)
throws MathArithmeticException {
double value = 0;
for (int i = getSize() - 1; i >= 0; --i) {
final int[] orders = getPartialDerivativeOrders(i);
double term = ds[dsOffset + i];
for (int k = 0; k < orders.length; ++k) {
if (orders[k] > 0) {
try {
term *= FastMath.pow(delta[k], orders[k]) /
ArithmeticUtils.factorial(orders[k]);
} catch (NotPositiveException e) {
// this cannot happen
throw new MathInternalError(e);
}
}
}
value += term;
}
return value;
}
示例2: taylor
import org.apache.commons.math3.util.ArithmeticUtils; //导入方法依赖的package包/类
/** Evaluate Taylor expansion of a derivative structure.
* @param ds array holding the derivative structure
* @param dsOffset offset of the derivative structure in its array
* @param delta parameters offsets (Δx, Δy, ...)
* @return value of the Taylor expansion at x + Δx, y + Δy, ...
*/
public double taylor(final double[] ds, final int dsOffset, final double ... delta) {
double value = 0;
for (int i = getSize() - 1; i >= 0; --i) {
final int[] orders = getPartialDerivativeOrders(i);
double term = ds[dsOffset + i];
for (int k = 0; k < orders.length; ++k) {
if (orders[k] > 0) {
term *= FastMath.pow(delta[k], orders[k]) / ArithmeticUtils.factorial(orders[k]);
}
}
value += term;
}
return value;
}
示例3: testReciprocal
import org.apache.commons.math3.util.ArithmeticUtils; //导入方法依赖的package包/类
@Test
public void testReciprocal() {
for (double x = 0.1; x < 1.2; x += 0.1) {
DerivativeStructure r = new DerivativeStructure(1, 6, 0, x).reciprocal();
Assert.assertEquals(1 / x, r.getValue(), 1.0e-15);
for (int i = 1; i < r.getOrder(); ++i) {
double expected = ArithmeticUtils.pow(-1, i) * ArithmeticUtils.factorial(i) /
FastMath.pow(x, i + 1);
Assert.assertEquals(expected, r.getPartialDerivative(i), 1.0e-15 * FastMath.abs(expected));
}
}
}
示例4: testLog
import org.apache.commons.math3.util.ArithmeticUtils; //导入方法依赖的package包/类
@Test
public void testLog() {
double[] epsilon = new double[] { 1.0e-16, 1.0e-16, 3.0e-14, 7.0e-13, 3.0e-11 };
for (int maxOrder = 0; maxOrder < 5; ++maxOrder) {
for (double x = 0.1; x < 1.2; x += 0.001) {
DerivativeStructure log = new DerivativeStructure(1, maxOrder, 0, x).log();
Assert.assertEquals(FastMath.log(x), log.getValue(), epsilon[0]);
for (int n = 1; n <= maxOrder; ++n) {
double refDer = -ArithmeticUtils.factorial(n - 1) / FastMath.pow(-x, n);
Assert.assertEquals(refDer, log.getPartialDerivative(n), epsilon[n]);
}
}
}
}
示例5: testLog
import org.apache.commons.math3.util.ArithmeticUtils; //导入方法依赖的package包/类
@Override
@Test
public void testLog() {
double[] epsilon = new double[] { 1.0e-16, 1.0e-16, 3.0e-14, 7.0e-13, 3.0e-11 };
for (int maxOrder = 0; maxOrder < 5; ++maxOrder) {
for (double x = 0.1; x < 1.2; x += 0.001) {
DerivativeStructure log = new DerivativeStructure(1, maxOrder, 0, x).log();
Assert.assertEquals(FastMath.log(x), log.getValue(), epsilon[0]);
for (int n = 1; n <= maxOrder; ++n) {
double refDer = -ArithmeticUtils.factorial(n - 1) / FastMath.pow(-x, n);
Assert.assertEquals(refDer, log.getPartialDerivative(n), epsilon[n]);
}
}
}
}
示例6: evaluate
import org.apache.commons.math3.util.ArithmeticUtils; //导入方法依赖的package包/类
public BigDecimal evaluate(AFactorialPostfixop expression)
{
BigDecimal value = evaluate(expression.getPostfixop());
int valInt;
try {
valInt = value.intValueExact();
} catch (ArithmeticException e) {
throw new RuntimeException(String.format(
"Cannot compute factorial of non-integer value '%s' at %s",
value,
Printer.nodeToString(expression)));
}
return new BigDecimal(ArithmeticUtils.factorial(valInt), STORED_PRECISION);
}