当前位置: 首页>>代码示例>>Java>>正文


Java StandardDeviation.evaluate方法代码示例

本文整理汇总了Java中org.apache.commons.math3.stat.descriptive.moment.StandardDeviation.evaluate方法的典型用法代码示例。如果您正苦于以下问题:Java StandardDeviation.evaluate方法的具体用法?Java StandardDeviation.evaluate怎么用?Java StandardDeviation.evaluate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.commons.math3.stat.descriptive.moment.StandardDeviation的用法示例。


在下文中一共展示了StandardDeviation.evaluate方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: computePopulationStandardDeviationOfBigDecimals

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public static BigDecimal computePopulationStandardDeviationOfBigDecimals(List<BigDecimal> numbers) {
    
    if ((numbers == null) || numbers.isEmpty()) {
        return null;
    }
    
    try {
        double[] doublesArray = new double[numbers.size()];

        for (int i = 0; i < doublesArray.length; i++) {
            doublesArray[i] = numbers.get(i).doubleValue();
        }

        StandardDeviation standardDeviation = new StandardDeviation();
        standardDeviation.setBiasCorrected(false);
        BigDecimal standardDeviationResult = new BigDecimal(standardDeviation.evaluate(doublesArray));

        return standardDeviationResult;
    }
    catch (Exception e) {
        logger.error(e.toString() + System.lineSeparator() + StackTrace.getStringFromStackTrace(e));
        return null;
    }
}
 
开发者ID:PearsonEducation,项目名称:StatsAgg,代码行数:25,代码来源:MathUtilities.java

示例2: computeStat

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public void computeStat(double duration, int maxUsers) {
    double[] times = getDurationAsArray();
    min = (long) StatUtils.min(times);
    max = (long) StatUtils.max(times);
    double sum = 0;
    for (double d : times) sum += d;
    avg = sum / times.length;
    p50 = (long) StatUtils.percentile(times, 50.0);
    p95 = (long) StatUtils.percentile(times, 95.0);
    p99 = (long) StatUtils.percentile(times, 99.0);
    StandardDeviation stdDev = new StandardDeviation();
    stddev = (long) stdDev.evaluate(times, avg);
    this.duration = duration;
    this.maxUsers = maxUsers;
    rps = (count - errorCount) / duration;
    startDate = getDateFromInstant(start);
    successCount = count - errorCount;
}
 
开发者ID:nuxeo,项目名称:gatling-report,代码行数:19,代码来源:RequestStat.java

示例3: get_cv

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public Map<String, Double> get_cv(String[] group_var, String[] uniq_group){
    Map<String, Double> group_to_cv_map = new TreeMap<String, Double>();
    Map<String, ArrayList<Double> > grouped_y = new TreeMap<String, ArrayList<Double>>();
    for (String aUniq_group : uniq_group){
        grouped_y.put(aUniq_group, new ArrayList<Double>());
        for (int i = 0; i < group_var.length; i++) {
            if (group_var[i].equals(aUniq_group)){
                grouped_y.get(aUniq_group).add(this.y_list.get(i));
            }
        }
    }

    StandardDeviation std_stat = new StandardDeviation(true);
    Mean mean_stat = new Mean();
    for(Iterator<Map.Entry<String, ArrayList<Double>>> it = grouped_y.entrySet().iterator(); it.hasNext(); ) {
        Map.Entry<String, ArrayList<Double>> entry = it.next();
        double[] cur_y_arr = ArrayUtils.toPrimitive(entry.getValue().toArray(new Double[entry.getValue().size()]));
        double  std = std_stat.evaluate(cur_y_arr);
        double mean = mean_stat.evaluate(cur_y_arr);
        group_to_cv_map.put(entry.getKey(), std/mean);
    }

    this.cv = group_to_cv_map;
    return group_to_cv_map;
}
 
开发者ID:jiach,项目名称:MetaDiff,代码行数:26,代码来源:ArrFPKM.java

示例4: evaluate

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
@Override
/**
 * @return [0] Mean  distance [1] SD  distance 
 */
public double[] evaluate() {
	splinefit = new TrajectorySplineFit(t,nSegments);
	splinefit.calculateSpline();
	if(!splinefit.wasSuccessfull()){
		return new double[] {Double.NaN,Double.NaN};
	}
	double[] data = new double[t.size()];
	for(int i = 0; i < t.size(); i++){
		
		Point2D.Double help = new Point2D.Double(splinefit.getRotatedTrajectory().get(i).x, splinefit.getRotatedTrajectory().get(i).y);
		data[i] = help.distance(splinefit.minDistancePointSpline(new Point2D.Double(splinefit.getRotatedTrajectory().get(i).x, splinefit.getRotatedTrajectory().get(i).y), 50));
	}
	Mean m = new Mean();
	StandardDeviation sd = new StandardDeviation();
	result = new double[] {m.evaluate(data),sd.evaluate(data)};
	return result;

	 
}
 
开发者ID:thorstenwagner,项目名称:TraJ,代码行数:24,代码来源:SplineCurveSpatialFeature.java

示例5: getExpectedValue

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
@Override
public Number getExpectedValue(int start, int length)
{
    if (length == 0) {
        return null;
    }

    double[] values = new double[length];
    for (int i = 0; i < length; i++) {
        values[i] = start + i;
    }

    StandardDeviation stdDev = new StandardDeviation(false);
    return stdDev.evaluate(values);
}
 
开发者ID:y-lan,项目名称:presto,代码行数:16,代码来源:TestLongStdDevPopAggregation.java

示例6: getExpectedValue

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
@Override
public Number getExpectedValue(int start, int length)
{
    if (length < 2) {
        return null;
    }

    double[] values = new double[length];
    for (int i = 0; i < length; i++) {
        values[i] = start + i;
    }

    StandardDeviation stdDev = new StandardDeviation();
    return stdDev.evaluate(values);
}
 
开发者ID:y-lan,项目名称:presto,代码行数:16,代码来源:TestDoubleStdDevAggregation.java

示例7: calculateNthMoment

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public double calculateNthMoment(int n){
	Array2DRowRealMatrix gyr = RadiusGyrationTensor2D.getRadiusOfGyrationTensor(t);
	EigenDecomposition eigdec = new EigenDecomposition(gyr);
	
	Vector2d eigv = new Vector2d(eigdec.getEigenvector(0).getEntry(0),eigdec.getEigenvector(0).getEntry(1));

	double[] projected = new double[t.size()];
	for(int i = 0; i < t.size(); i++){
		Vector2d pos = new Vector2d(t.get(i).x,t.get(i).y);
		double v = eigv.dot(pos);
		projected[i] = v;
	}
	
	Mean m = new Mean();
	StandardDeviation s = new StandardDeviation();
	double mean = m.evaluate(projected);
	double sd  = s.evaluate(projected);
	double sumPowN=0;

	for(int i = 0; i < projected.length; i++){
		sumPowN += Math.pow( (projected[i]-mean)/sd, n);
	}

	double nThMoment =  sumPowN/projected.length;
	
	return nThMoment;
}
 
开发者ID:thorstenwagner,项目名称:TraJ,代码行数:28,代码来源:MomentsCalculator.java

示例8: evaluate

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
@Override
public double[] evaluate() {
	StandardDeviation sd = new StandardDeviation();
	double[] values = new double[t.size()-timelag-1];
	double subx = 0;
	double suby = 0;
	double subz = 0;

	for(int i = timelag+1; i < t.size(); i++){
		
			subx = t.get(i-timelag-1).x;
			suby = t.get(i-timelag-1).y;
			subz = t.get(i-timelag-1).z;
		
		Vector3d v1 = new Vector3d(t.get(i-timelag).x-subx,t.get(i-timelag).y-suby,t.get(i-timelag).z-subz);
		
		subx = t.get(i-1).x;
		suby = t.get(i-1).y;
		subz = t.get(i-1).z;
		Vector3d v2 = new Vector3d(t.get(i).x-subx,t.get(i).y-suby,t.get(i).z-subz);
	
		double v = v1.angle(v2);
		
		boolean v1IsZero = TrajectoryUtil.isZero(v1.x) && TrajectoryUtil.isZero(v1.y) && TrajectoryUtil.isZero(v1.z);  
		boolean v2IsZero = TrajectoryUtil.isZero(v2.x) && TrajectoryUtil.isZero(v2.y) && TrajectoryUtil.isZero(v2.z);  
		if(v1IsZero || v2IsZero){
			v = 0;
		}
		values[i-timelag-1] = v;
		//System.out.println("da " + v1.angle(v2));
	}

	sd.setData(values);
	result = new double[]{sd.evaluate()};

	return result;
}
 
开发者ID:thorstenwagner,项目名称:TraJ,代码行数:38,代码来源:StandardDeviationDirectionFeature.java

示例9: generateActiveData

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public static void generateActiveData() {
	CentralRandomNumberGenerator.getInstance().setSeed(10);
	int tracklength = 500;
	double dt = 1.0 / 30;
	double r = 1;
	double[] SNRs = { 1, 2, 5 };
	double angleVelocity = Math.PI / 4;
	int N = 50;
	int w = 30;
	AbstractClassifier rrf = new RRFClassifierRenjin(modelpath, dt);
	rrf.start();
	WeightedWindowedClassificationProcess wcp = new WeightedWindowedClassificationProcess();
	double[] par = new double[15];
	double[] cor = new double[15];
	double[] sdcor = new double[15];
	double[] semcor = new double[15];
	int j = 0;
	Mean m = new Mean();
	StandardDeviation sd = new StandardDeviation();
	for (double SNR : SNRs) {
		r = 1;
		j = 0;
		while (r <= 15) {

			double[] val = new double[N];
			for (int i = 0; i < N; i++) {

				double drift = Math.sqrt(r * 4 * diffusioncoefficient
						/ ((w * 2) * dt));
				double sigmaPosNoise = Math.sqrt(diffusioncoefficient * dt
						+ drift * drift * dt * dt)
						/ SNR;
				AbstractSimulator sim1 = new ActiveTransportSimulator(
						drift, angleVelocity, dt, 2, tracklength);
				AbstractSimulator sim2 = new FreeDiffusionSimulator(
						diffusioncoefficient, dt, 2, tracklength);
				AbstractSimulator sim = new CombinedSimulator(sim1, sim2);
				Trajectory t = sim.generateTrajectory();
				t = SimulationUtil.addPositionNoise(t, sigmaPosNoise);
				String[] res = wcp.windowedClassification(t, rrf, w,1);
				val[i] = getCorrectNess(res, "DIRECTED/ACTIVE");
			}
			double meancorrectness = m.evaluate(val);
			double corrsd = sd.evaluate(val);
			par[j] = r;
			cor[j] = meancorrectness;
			sdcor[j] = corrsd;
			semcor[j] = corrsd / Math.sqrt(N);
			j++;
			r += 1;
		}

		exportCSV("/home/thorsten/perform_active_SNR_" + SNR + "_N_" + N
				+ ".csv", "r", par, cor, sdcor, semcor);
	}
	rrf.stop();
}
 
开发者ID:thorstenwagner,项目名称:ij-trajectory-classifier,代码行数:58,代码来源:PerformanceDataGenerator.java

示例10: generateSubdiffusionData

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public static void generateSubdiffusionData() {
	CentralRandomNumberGenerator.getInstance().setSeed(10);
	int tracklength = 500;
	double dt = 1.0 / 30;
	double[] alphas = { 0.3, 0.5, 0.7};
	double SNR = 5;
	int N = 80;
	AbstractClassifier rrf = new RRFClassifierRenjin(modelpath, dt);
	rrf.start();
	WeightedWindowedClassificationProcess wcp = new WeightedWindowedClassificationProcess();
	double[] par = new double[17];
	double[] cor = new double[17];
	double[] sdcor = new double[17];
	double[] semcor = new double[17];
	int j = 0;
	Mean m = new Mean();
	StandardDeviation sd = new StandardDeviation();

	for (double alpha : alphas) {
		j = 0;
		AbstractSimulator sim1 = new AnomalousDiffusionWMSimulation(
				diffusioncoefficient, dt, 2, 2000, alpha);
		for (int w = 15; w < 100; w += 5) {
			double[] val = new double[N];
			double sigmaPosNoise = Math.sqrt(diffusioncoefficient * dt)
					/ SNR;

			for (int i = 0; i < N; i++) {
				Trajectory t = sim1.generateTrajectory();
				t = t.subList(0, tracklength);
				t = SimulationUtil.addPositionNoise(t, sigmaPosNoise);
				String[] res = wcp.windowedClassification(t, rrf, w,1);
				val[i] = getCorrectNess(res, "SUBDIFFUSION");
			}
			double meancorrectness = m.evaluate(val);
			double corrsd = sd.evaluate(val);

			par[j] = 2 * w;
			cor[j] = meancorrectness;
			sdcor[j] = corrsd;
			semcor[j] = corrsd / Math.sqrt(N);
			j++;
		}

		exportCSV("/home/thorsten/perform_subdiffusion_SNR_" + SNR + "_N_"
				+ N + "_alpha_" + alpha + "_.csv", "r", par, cor, sdcor,
				semcor);
	}
	rrf.stop();
}
 
开发者ID:thorstenwagner,项目名称:ij-trajectory-classifier,代码行数:51,代码来源:PerformanceDataGenerator.java

示例11: generateConfinedData

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public static void generateConfinedData() {
	CentralRandomNumberGenerator.getInstance().setSeed(10);
	int tracklength = 500;
	double dt = 1.0 / 30;
	double B = 0.5;
	double[] SNRs = {1, 2, 5 };

	int N = 200;
	int w = 30;
	AbstractClassifier rrf = new RRFClassifierRenjin(modelpath, dt);
	rrf.start();
	WeightedWindowedClassificationProcess wcp = new WeightedWindowedClassificationProcess();
	double[] par = new double[30];
	double[] cor = new double[30];
	double[] sdcor = new double[30];
	double[] semcor = new double[30];
	int j = 0;
	Mean m = new Mean();
	StandardDeviation sd = new StandardDeviation();
	for (double SNR : SNRs) {
		B = 0.5;
		j = 0;
		while (B <= 4) {

			double[] val = new double[N];
			double sigmaPosNoise = Math.sqrt(diffusioncoefficient * dt)
					/ SNR;
			double radius = Math.sqrt(BoundednessFeature.a(2 * w)
					* diffusioncoefficient * dt / (4 * B));
			AbstractSimulator sim1 = new ConfinedDiffusionSimulator(
					diffusioncoefficient, dt, radius, 2, tracklength);
			for (int i = 0; i < N; i++) {

				Trajectory t = sim1.generateTrajectory();
				t = SimulationUtil.addPositionNoise(t, sigmaPosNoise);
				String[] res = wcp.windowedClassification(t, rrf, w,1);
				val[i] = getCorrectNess(res, "CONFINED");
			}
			double meancorrectness = m.evaluate(val);
			double corrsd = sd.evaluate(val);

			par[j] = B;
			cor[j] = meancorrectness;
			sdcor[j] = corrsd;
			semcor[j] = corrsd / Math.sqrt(N);
			j++;
			B += 0.2;
		}

		exportCSV("/home/thorsten/perform_confined_SNR_" + SNR + "_N_" + N
				+ "_B_" + B + "_.csv", "r", par, cor, sdcor, semcor);
	}
	rrf.stop();
}
 
开发者ID:thorstenwagner,项目名称:ij-trajectory-classifier,代码行数:55,代码来源:PerformanceDataGenerator.java

示例12: generateNormalDiffData

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public static void generateNormalDiffData() {
	CentralRandomNumberGenerator.getInstance().setSeed(10);
	int tracklength = 500;
	double dt = 1.0 / 30;
	double[] SNRs = { 1, 2,  5 };
	int N = 200;

	AbstractClassifier rrf = new RRFClassifierRenjin(modelpath, dt);
	rrf.start();
	WeightedWindowedClassificationProcess wcp = new WeightedWindowedClassificationProcess();
	double[] par = new double[16];
	double[] cor = new double[16];
	double[] sdcor = new double[16];
	double[] semcor = new double[16];
	Mean m = new Mean();
	StandardDeviation sd = new StandardDeviation();
	for (double SNR : SNRs) {
		int w = 15;
		int j = 0;
		while (w <= 90) {

			double[] val = new double[N];
			for (int i = 0; i < N; i++) {

				double sigmaPosNoise = Math.sqrt(diffusioncoefficient * dt)
						/ SNR;
				AbstractSimulator sim = new FreeDiffusionSimulator(
						diffusioncoefficient, dt, 2, tracklength);
				Trajectory t = sim.generateTrajectory();
				t = SimulationUtil.addPositionNoise(t, sigmaPosNoise);
				String[] res = wcp.windowedClassification(t, rrf, w,1);
				val[i] = getCorrectNess(res, "NORM. DIFFUSION");
			}
			double meancorrectness = m.evaluate(val);
			double corrsd = sd.evaluate(val);

			par[j] = 2 * w;
			cor[j] = meancorrectness;
			sdcor[j] = corrsd;
			semcor[j] = corrsd / Math.sqrt(N);
			j++;
			w += 5;
		}

		exportCSV("/home/thorsten/perform_normal_SNR_" + SNR + "_N_" + N
				+ ".csv", "w", par, cor, sdcor, semcor);

	}
	rrf.stop();
}
 
开发者ID:thorstenwagner,项目名称:ij-trajectory-classifier,代码行数:51,代码来源:PerformanceDataGenerator.java

示例13: getSDNN

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public HRVParameter getSDNN() {
    StandardDeviation d = new StandardDeviation();
    return new HRVParameter(HRVParameterEnum.SDNN, d.evaluate(data.getValueAxis()), "non");
}
 
开发者ID:HRVBand,项目名称:hrv-band,代码行数:5,代码来源:HRVCalculatorFacade.java

示例14: getSampleStandardDeviation

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
@Override
public double getSampleStandardDeviation() {
	updateBuffer();
	StandardDeviation sd = new StandardDeviation();
	return sd.evaluate(buffer, 0, getSamplesCollected());
}
 
开发者ID:jacksonicson,项目名称:rain,代码行数:7,代码来源:AllSamplingStrategy.java

示例15: getStandardDeviation

import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; //导入方法依赖的package包/类
public double getStandardDeviation(double [] featArray)
{
    StandardDeviation sd = new StandardDeviation();
    double stdev = sd.evaluate(featArray);
    return stdev;
}
 
开发者ID:ethering,项目名称:GenomeHelper,代码行数:7,代码来源:GFFFeatureStats.java


注:本文中的org.apache.commons.math3.stat.descriptive.moment.StandardDeviation.evaluate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。