本文整理汇总了Java中org.apache.commons.math3.stat.StatUtils.variance方法的典型用法代码示例。如果您正苦于以下问题:Java StatUtils.variance方法的具体用法?Java StatUtils.variance怎么用?Java StatUtils.variance使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.stat.StatUtils
的用法示例。
在下文中一共展示了StatUtils.variance方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testVarianceDecompMeanCutoff
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
/**
* Check that the lower + upper semivariance against the mean sum to the
* variance.
*/
@Test
public void testVarianceDecompMeanCutoff() {
double[] values = { -2.0d, 2.0d, 4.0d, -2.0d, 22.0d, 11.0d, 3.0d, 14.0d, 5.0d };
double variance = StatUtils.variance(values);
SemiVariance sv = new SemiVariance(true); // Bias corrected
sv.setVarianceDirection(SemiVariance.DOWNSIDE_VARIANCE);
final double lower = sv.evaluate(values);
sv.setVarianceDirection(SemiVariance.UPSIDE_VARIANCE);
final double upper = sv.evaluate(values);
Assert.assertEquals(variance, lower + upper, 10e-12);
}
示例2: DefaultFTest
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
DefaultFTest(final double[] sample1, final double[] sample2) {
final double variance1 = StatUtils.variance(sample1);
final double variance2 = StatUtils.variance(sample2);
this.numeratorDegreesOfFreedom = sample1.length - 1;
this.denominatorDegreesOfFreedom = sample2.length - 1;
final FDistribution fDistribution = new FDistribution(numeratorDegreesOfFreedom, denominatorDegreesOfFreedom);
this.ratio = variance2 / variance1;
this.p = 2 * (1 - fDistribution.probability(ratio));
}
示例3: calculateStats
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
/**
*
* @param dataActiveMap
* @param sample
*/
public void calculateStats ( boolean[] dataActiveMap, double[] sample ) {
ArrayList<Double> liveSample = new ArrayList<>();
sampleMean = 0.0;
if ( sample.length > 0 ) {
for (int i = 0; i < sample.length; i ++) {
if ( dataActiveMap[i] ) {
sampleMean += sample[i];
liveSample.add( sample[i] );
}
}
sampleMean /= liveSample.size();
}
double[] liveSampleArray = new double[liveSample.size()];
for (int i = 0; i < liveSampleArray.length; i ++){
liveSampleArray[i] = (double)liveSample.get( i );
}
sampleMean = StatUtils.mean( liveSampleArray );
variance = StatUtils.variance( liveSampleArray );
stdErrSampleMean = Math.sqrt(variance) / Math.sqrt( liveSampleArray.length );
}
示例4: testSmooth
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
@Test
public void testSmooth() throws Exception {
final double[] arr = new double[] {0, 1, 3, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 4, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 3, 1, 0, 0, 0, 0, 2, 0, 0, 1, 3, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 3, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 6, 1, 0, 3, 1, 1, 3, 0, 2, 0, 1, 0, 0, 0, 2, 1, 4, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 1, 1, 5, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0, 2, 3, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 5, 3, 0, 1, 0, 0, 0, 0, 1, 3, 0, 3, 4, 0, 0, 2, 1, 0, 2, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 5, 0, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 1, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 3, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 4, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 4, 1, 2, 0, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 0, 0, 3, 0, 2, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 3, 2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 4, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 2, 1, 1, 1, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 2, 3, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1};
final double[] t = Doubles.constantArray(arr.length, 1.0);
final double largeT = 10.0;
final double mean = StatUtils.mean(arr);
final double var = StatUtils.variance(arr);
final double mom_alpha = (mean * mean) / (var - mean),
mom_beta = mean / (var - mean);
final double[] result = TLambdaPoissonSmoother.estimateAlphaBeta(arr, t).getPointRef();
final double[] resultBl = TLambdaPoissonSmoother.estimateAlphaBeta(arr, Doubles.constantArray(t.length, largeT)).getPointRef();
// Larger branch length just changes Beta
Assert.assertEquals(result[0], resultBl[0], 1e-2);
Assert.assertEquals(result[1], resultBl[1] / largeT, 1e-2);
// Actual results are close to MOM result
Assert.assertEquals(mom_alpha, result[0], TOL);
Assert.assertEquals(mom_beta, result[1], TOL);
final double[] tlSmoothed = TLambdaPoissonSmoother.smooth(arr, t);
final double[] tlSmoothedBl = TLambdaPoissonSmoother.smooth(arr, Doubles.constantArray(t.length, largeT));
Assert.assertArrayEquals(tlSmoothed, Doubles.scalarMultiply(tlSmoothedBl, largeT), 1e2);
final double[] origSmoothed = EmpiricalBayesPoissonSmoother.smooth(arr);
// this is a pretty loose tolerance...
Assert.assertArrayEquals(origSmoothed, tlSmoothed, 0.1);
}
示例5: variance
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
/**
*
* @return
*/
public synchronized double variance()
{
if(this.variance == 0.0 && (this.nextSample == this.nrSamples))
this.variance = StatUtils.variance(this.timeRecords);
return this.variance;
}
示例6: stdDeviation
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
/**
*
* @return
*/
public synchronized double stdDeviation()
{
if(this.variance == 0.0 && (this.nextSample == this.nrSamples))
this.variance = StatUtils.variance(this.timeRecords);
return Math.sqrt(this.variance);
}
示例7: calculateVariance
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
private double calculateVariance(double[] values, double average) {
if (values == null || values.length == 0)
return 0.0;
double variance = StatUtils.variance(values, average);
return variance;
}
示例8: columnVariance
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
public static DoubleMatrix columnVariance(DoubleMatrix input)
{
DoubleMatrix columnMeans = input.columnMeans();
DoubleMatrix ret = new DoubleMatrix(1, columnMeans.columns);
for (int i = 0; i < ret.columns; i++)
{
DoubleMatrix column = input.getColumn(i);
double variance = StatUtils.variance(column.toArray(), columnMeans.get(i));
if (variance == 0)
variance = 1e-6;
ret.put(i, variance);
}
return ret;
}
示例9: agg
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
@Override
public double agg(double[] data) {
return StatUtils.variance(data);
}
示例10: estimateAlphaBeta
import org.apache.commons.math3.stat.StatUtils; //导入方法依赖的package包/类
/**
* Estimate alpha, beta given c, t
*
* @param c Counts
* @param t Branch lengths
* @return Point, containing (alpha, beta), and associated log-likelihood
*/
@VisibleForTesting
static PointValuePair estimateAlphaBeta(final double[] c, final double[] t) {
// Optimize. point[0] = alpha, point[1] = beta
final int dim = 2;
BOBYQAOptimizer optimizer = new BOBYQAOptimizer(2 * dim + ADDL_INTERPOLATION_PTS);
final MultivariateFunction fn = new MultivariateFunction() {
@Override
public double value(double[] point) {
Preconditions.checkArgument(point.length == 2,
"Invalid data size: %s", point.length);
return logLikelihood(point[0], point[1], c, t);
}
};
// Start with method-of-moments
final double mean = StatUtils.mean(c),
var = StatUtils.variance(c);
double mom_alpha, mom_beta;
if (var > mean) {
mom_alpha = (mean * mean) / (var - mean);
mom_beta = mean / (var - mean);
} else {
mom_alpha = 1;
mom_beta = 1;
}
// Bounds - both must be positive
final double lowerBounds[] = new double[]{1e-7, 1e-7};
final double upperBounds[] = new double[]{Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY};
final double initial[] = new double[]{mom_alpha, mom_beta};
try {
PointValuePair result = optimizer.optimize(
new MaxEval(2000),
new InitialGuess(initial),
GoalType.MAXIMIZE,
new ObjectiveFunction(fn),
new SimpleBounds(lowerBounds, upperBounds));
logger.log(Level.FINE, "BOBYQA finished in {0} iterations", optimizer.getIterations());
return result;
} catch (Exception e) {
// logger.log(Level.SEVERE,
// "Optimization failed [mom_alpha: {0}, mom_beta: {1}]\nc={2}\nt={3}",
// new Object[]{mom_alpha, mom_beta,
// java.util.Arrays.toString(c),
// java.util.Arrays.toString(t)});
throw e;
}
}