当前位置: 首页>>代码示例>>Java>>正文


Java EigenDecomposition.hasComplexEigenvalues方法代码示例

本文整理汇总了Java中org.apache.commons.math3.linear.EigenDecomposition.hasComplexEigenvalues方法的典型用法代码示例。如果您正苦于以下问题:Java EigenDecomposition.hasComplexEigenvalues方法的具体用法?Java EigenDecomposition.hasComplexEigenvalues怎么用?Java EigenDecomposition.hasComplexEigenvalues使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.commons.math3.linear.EigenDecomposition的用法示例。


在下文中一共展示了EigenDecomposition.hasComplexEigenvalues方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: calcEigenvalues

import org.apache.commons.math3.linear.EigenDecomposition; //导入方法依赖的package包/类
/**
 * @param a
 * @return dataset of eigenvalues (can be double or complex double)
 */
public static Dataset calcEigenvalues(Dataset a) {
	EigenDecomposition evd = new EigenDecomposition(createRealMatrix(a));
	double[] rev = evd.getRealEigenvalues();

	if (evd.hasComplexEigenvalues()) {
		double[] iev = evd.getImagEigenvalues();
		return DatasetFactory.createComplexDataset(ComplexDoubleDataset.class, rev, iev);
	}
	return DatasetFactory.createFromObject(rev);
}
 
开发者ID:eclipse,项目名称:january,代码行数:15,代码来源:LinearAlgebra.java

示例2: calcEigenDecomposition

import org.apache.commons.math3.linear.EigenDecomposition; //导入方法依赖的package包/类
/**
 * Calculate eigen-decomposition A = V D V^T
 * @param a
 * @return array of D eigenvalues (can be double or complex double) and V eigenvectors
 */
public static Dataset[] calcEigenDecomposition(Dataset a) {
	EigenDecomposition evd = new EigenDecomposition(createRealMatrix(a));
	Dataset[] results = new Dataset[2];

	double[] rev = evd.getRealEigenvalues();
	if (evd.hasComplexEigenvalues()) {
		double[] iev = evd.getImagEigenvalues();
		results[0] = DatasetFactory.createComplexDataset(ComplexDoubleDataset.class, rev, iev);
	} else {
		results[0] = DatasetFactory.createFromObject(rev);
	}
	results[1] = createDataset(evd.getV());
	return results;
}
 
开发者ID:eclipse,项目名称:january,代码行数:20,代码来源:LinearAlgebra.java

示例3: eigen_bak

import org.apache.commons.math3.linear.EigenDecomposition; //导入方法依赖的package包/类
/**
 * Calculates the eigen decomposition of a real matrix. The eigen
 * decomposition of matrix A is a set of two matrices: V and D such that A =
 * V × D × VT. A, V and D are all m × m matrices.
 *
 * @param a Given matrix.
 * @return Result W/V arrays.
 */
public static Array[] eigen_bak(Array a) {
    int m = a.getShape()[0];
    Array Wa;
    Array Va = Array.factory(DataType.DOUBLE, new int[]{m, m});
    double[][] aa = (double[][]) ArrayUtil.copyToNDJavaArray(a);
    RealMatrix matrix = new Array2DRowRealMatrix(aa, false);
    EigenDecomposition decomposition = new EigenDecomposition(matrix);
    if (decomposition.hasComplexEigenvalues()) {
        Wa = Array.factory(DataType.OBJECT, new int[]{m});
        double[] rev = decomposition.getRealEigenvalues();
        double[] iev = decomposition.getImagEigenvalues();
        for (int i = 0; i < m; i++) {
            Wa.setObject(i, new Complex(rev[i], iev[i]));
            RealVector v = decomposition.getEigenvector(i);
            for (int j = 0; j < v.getDimension(); j++) {
                Va.setDouble(j * m + i, v.getEntry(j));
            }
        }
    } else {
        RealMatrix V = decomposition.getV();
        RealMatrix D = decomposition.getD();
        Wa = Array.factory(DataType.DOUBLE, new int[]{m});
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < m; j++) {
                Va.setDouble(i * m + (m - j - 1), V.getEntry(i, j));
                if (i == j) {
                    Wa.setDouble(m - i - 1, D.getEntry(i, j));
                }
            }
        }
    }

    return new Array[]{Wa, Va};
}
 
开发者ID:meteoinfo,项目名称:MeteoInfoLib,代码行数:43,代码来源:LinalgUtil.java


注:本文中的org.apache.commons.math3.linear.EigenDecomposition.hasComplexEigenvalues方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。