本文整理汇总了Java中org.apache.commons.math3.distribution.NormalDistribution.sample方法的典型用法代码示例。如果您正苦于以下问题:Java NormalDistribution.sample方法的具体用法?Java NormalDistribution.sample怎么用?Java NormalDistribution.sample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math3.distribution.NormalDistribution
的用法示例。
在下文中一共展示了NormalDistribution.sample方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testRandomDataNormalDistribution
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
@Test
public void testRandomDataNormalDistribution() {
for (int run = 0; run < 100; run++) {
Random r = new Random(System.currentTimeMillis());
NormalDistribution dist = new NormalDistribution(0.0, r.nextDouble() * 5);
// matrix size
int size = r.nextInt(20) + 4;
double[][] data = new double[size][size];
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
data[i][j] = dist.sample();
}
}
RealMatrix m = MatrixUtils.createRealMatrix(data);
RealMatrix s = checkAEqualPTPt(m);
checkSchurForm(s);
}
}
示例2: testRandomDataNormalDistribution
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
@Test
public void testRandomDataNormalDistribution() {
for (int run = 0; run < 100; run++) {
Random r = new Random(System.currentTimeMillis());
NormalDistribution dist = new NormalDistribution(0.0, r.nextDouble() * 5);
// matrix size
int size = r.nextInt(20) + 4;
double[][] data = new double[size][size];
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
data[i][j] = dist.sample();
}
}
RealMatrix m = MatrixUtils.createRealMatrix(data);
RealMatrix h = checkAEqualPHPt(m);
checkHessenbergForm(h);
}
}
示例3: testNormalDistributionUnsymmetricMatrix
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
@Test
@Ignore
public void testNormalDistributionUnsymmetricMatrix() {
for (int run = 0; run < 100; run++) {
Random r = new Random(System.currentTimeMillis());
NormalDistribution dist = new NormalDistribution(0.0, r.nextDouble() * 5);
// matrix size
int size = r.nextInt(20) + 4;
double[][] data = new double[size][size];
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
data[i][j] = dist.sample();
}
}
RealMatrix m = MatrixUtils.createRealMatrix(data);
checkUnsymmetricMatrix(m);
}
}
示例4: gaussianMixture
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
public RegDataSet gaussianMixture(){
NormalDistribution leftGaussian = new NormalDistribution(0.2,0.01);
NormalDistribution rightGaussian = new NormalDistribution(0.7,0.1);
RegDataSet dataSet = RegDataSetBuilder.getBuilder()
.numDataPoints(numDataPoints)
.numFeatures(1)
.dense(true)
.missingValue(false)
.build();
for (int i=0;i<numDataPoints;i++){
double featureValue = Sampling.doubleUniform(0,1);
double label;
if (featureValue>0.5){
label = leftGaussian.sample();
} else {
label = rightGaussian.sample();
}
dataSet.setFeatureValue(i,0,featureValue);
dataSet.setLabel(i,label);
}
return dataSet;
}
示例5: calculateNormalDistributedValue
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
/**
* 'Computes' a random float with the given mean and standard deviation as normal distribution.
*
*/
private void calculateNormalDistributedValue() {
// https://commons.apache.org/proper/commons-math/javadocs/api-3.2/org/apache/commons/math3/distribution/NormalDistribution.html
String userInput = this.getInputOrDefault();
double mean = Double.parseDouble(userInput.split(";")[0]);
double standardDeviation = Double.parseDouble(userInput.split(";")[1]);
NormalDistribution normalDistribution = new NormalDistribution(mean, standardDeviation);
this.value = (float) normalDistribution.sample();
}
示例6: getMinMaxSupplier
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
private MinMaxSupplier getMinMaxSupplier(int min, int max, int mean, int sd) {
final NormalDistribution distribution = new NormalDistribution(mean, sd);
return new MinMaxSupplier(new DoubleFunction0() {
@Override
public double value() {
return distribution.sample();
}
}, min, max);
}
示例7: delegateGetBucketForDouble
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
/**
* Test to check the Bucket Distribution for the double values
*
* @throws IndexParseFieldException
*/
public static RunStats delegateGetBucketForDouble(int buckets) throws Exception
{
Long startTime = System.currentTimeMillis();
PrimaryIndexBucketGeneratorImpl ibg = new PrimaryIndexBucketGeneratorImpl(FieldDataType.DOUBLE, buckets);
PrimaryIndexBucketLocatorImpl locator = new PrimaryIndexBucketLocatorImpl(null, null, ibg.generateBuckets(), null, null, null, null, null, null);
logger.debug("test to getBucket for the bucket distribution on Double values");
HashMap<Long, List<Object>> hm = new HashMap<>();
SummaryStatistics stats = new SummaryStatistics();
NormalDistribution dist = new NormalDistribution(0, 6);
Random r = new Random();
for (int i = 0; i < 20000; i++)
{
//double randomDouble = (-1) * Double.MIN_NORMAL + r.nextDouble() * Double.MAX_VALUE * Double.MAX_VALUE;
double normalRandom = dist.sample();
//randomly scale a bit more:
double scaleRandom = Math.random();
if (scaleRandom < .25)
{
normalRandom = normalRandom * 10;
} else if (scaleRandom < .5)
{
normalRandom = normalRandom * 500;
} else if (scaleRandom < .75)
{
normalRandom = normalRandom * 125000;
} else
{
normalRandom = normalRandom * 1250000;
}
Long bucketId = locator.getBucket(normalRandom, FieldDataType.DOUBLE);
calculate(hm, stats, bucketId, normalRandom);
}
Long runTime = System.currentTimeMillis() - startTime;
RunStats runStats = new RunStats("BucketForDouble", FieldDataType.DOUBLE, runTime, stats, hm);
logger.debug(runStats.toString());
return runStats;
}
示例8: makeBlobs
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
public static List<Vector2D> makeBlobs(int samples, int centers, double clusterStd,
double min, double max, boolean shuffle, RandomGenerator random) {
NormalDistribution dist = new NormalDistribution(random, 0.0, clusterStd, 1e-9);
double range = max - min;
Vector2D[] centerPoints = new Vector2D[centers];
for (int i = 0; i < centers; i++) {
double x = random.nextDouble() * range + min;
double y = random.nextDouble() * range + min;
centerPoints[i] = new Vector2D(x, y);
}
int[] nSamplesPerCenter = new int[centers];
int count = samples / centers;
Arrays.fill(nSamplesPerCenter, count);
for (int i = 0; i < samples % centers; i++) {
nSamplesPerCenter[i]++;
}
List<Vector2D> points = new ArrayList<Vector2D>();
for (int i = 0; i < centers; i++) {
for (int j = 0; j < nSamplesPerCenter[i]; j++) {
Vector2D point = new Vector2D(dist.sample(), dist.sample());
points.add(point.add(centerPoints[i]));
}
}
if (shuffle) {
Collections.shuffle(points, new RandomAdaptor(random));
}
return points;
}
示例9: nextNormal
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
/**
* Generates a random value for the normal distribution with the mean equal to {@code mu} and standard deviation
* equal to {@code sigma}.
*
* @param mu the mean of the distribution
* @param sigma the standard deviation of the distribution
* @return a random value for the given normal distribution
*/
public static double nextNormal(final RandomGenerator rng, final double mu, final double sigma) {
final NormalDistribution normalDistribution =
new NormalDistribution(rng, mu, sigma, NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
while (true) {
final double sample = normalDistribution.sample();
if (!Doubles.isFinite(sample)) {
logger.warn("Discarding non finite sample from normal distribution (mu={}, sigma={}): {}",
mu, sigma, sample);
continue;
}
return sample;
}
}
示例10: retrieveGaussianMixtureModelForFilteredTargets
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
/** <p>Produces a Gaussian mixture model based on the difference between targets and segment means.</p>
* <p>Filters targets to populations where more than the minProportion lie in a single segment.</p>
* <p>Returns null if no pass filtering. Please note that in these cases,
* in the rest of this class, we use this to assume that a GMM is not a good model.</p>
*
* @param segments -- segments with segment mean in log2 copy ratio space
* @param targets -- targets with a log2 copy ratio estimate
* @param minProportion -- minimum proportion of all targets that a given segment must have in order to be used
* in the evaluation
* @param numComponents -- number of components to use in the GMM. Usually, this is 2.
* @return never {@code null}. Fitting result with indications whether it converged or was even attempted.
*/
private MixtureMultivariateNormalFitResult retrieveGaussianMixtureModelForFilteredTargets(final List<ModeledSegment> segments,
final TargetCollection<ReadCountRecord.SingleSampleRecord> targets, double minProportion, int numComponents){
// For each target in a segment that contains enough targets, normalize the difference against the segment mean
// and collapse the filtered targets into the copy ratio estimates.
final List<Double> filteredTargetsSegDiff = getNumProbeFilteredTargetList(segments, targets, minProportion);
if (filteredTargetsSegDiff.size() < numComponents) {
return new MixtureMultivariateNormalFitResult(null, false, false);
}
// Assume that Apache Commons wants data points in the first dimension.
// Note that second dimension of length 2 (instead of 1) is to wrok around funny Apache commons API.
final double[][] filteredTargetsSegDiff2d = new double[filteredTargetsSegDiff.size()][2];
// Convert the filtered targets into 2d array (even if second dimension is length 1). The second dimension is
// uncorrelated Gaussian. This is only to get around funny API in Apache Commons, which will throw an
// exception if the length of the second dimension is < 2
final RandomGenerator rng = RandomGeneratorFactory.createRandomGenerator(new Random(RANDOM_SEED));
final NormalDistribution nd = new NormalDistribution(rng, 0, .1);
for (int i = 0; i < filteredTargetsSegDiff.size(); i++) {
filteredTargetsSegDiff2d[i][0] = filteredTargetsSegDiff.get(i);
filteredTargetsSegDiff2d[i][1] = nd.sample();
}
final MixtureMultivariateNormalDistribution estimateEM0 = MultivariateNormalMixtureExpectationMaximization.estimate(filteredTargetsSegDiff2d, numComponents);
final MultivariateNormalMixtureExpectationMaximization multivariateNormalMixtureExpectationMaximization = new MultivariateNormalMixtureExpectationMaximization(filteredTargetsSegDiff2d);
try {
multivariateNormalMixtureExpectationMaximization.fit(estimateEM0);
} catch (final MaxCountExceededException | ConvergenceException | SingularMatrixException e) {
// We are done, we cannot make a fitting. We should return a result that we attempted a fitting, but it
// did not converge. Include the model as it was when the exception was thrown.
return new MixtureMultivariateNormalFitResult(multivariateNormalMixtureExpectationMaximization.getFittedModel(), false, true);
}
return new MixtureMultivariateNormalFitResult(multivariateNormalMixtureExpectationMaximization.getFittedModel(), true, true);
}
示例11: getUnivariateGaussianTargetsWithDropout
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
private Object[][] getUnivariateGaussianTargetsWithDropout(final double sigma, final double dropoutRate) {
Random rng = new Random(337);
final RandomGenerator randomGenerator = RandomGeneratorFactory.createRandomGenerator(rng);
NormalDistribution n = new NormalDistribution(randomGenerator, 1, sigma);
final int numDataPoints = 10000;
final int numEventPoints = 2000;
// Randomly select dropoutRate of targets and reduce by 25%-75% (uniformly distributed)
UniformRealDistribution uniformRealDistribution = new UniformRealDistribution(randomGenerator, 0, 1.0);
final List<ReadCountRecord.SingleSampleRecord> targetList = new ArrayList<>();
for (int i = 0; i < numDataPoints; i++){
double coverage = n.sample() + (i < (numDataPoints - numEventPoints) ? 0.0 : 0.5);
if (uniformRealDistribution.sample() < dropoutRate) {
double multiplier = .25 + uniformRealDistribution.sample()/2;
coverage = coverage * multiplier;
}
targetList.add(new ReadCountRecord.SingleSampleRecord(new Target("arbitrary_name", new SimpleInterval("chr1", 100 + 2*i, 101 + 2 * i)), coverage));
}
HashedListTargetCollection<ReadCountRecord.SingleSampleRecord> targets = new HashedListTargetCollection<>(targetList);
List<ModeledSegment> segments = new ArrayList<>();
segments.add(new ModeledSegment(new SimpleInterval("chr1", 100, 16050), 8000, 1));
segments.add(new ModeledSegment(new SimpleInterval("chr1", 16100, 20200), 2000, 1.5));
return new Object [] []{ {targets, segments}};
}
示例12: fillExpectedValueArrayRecursive
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
private double fillExpectedValueArrayRecursive(double[] array, int currentNode, TObjectDoubleMap<String>[] strategyP1, TObjectDoubleMap<String>[] strategyP2, boolean negateValues, ZeroBranchOption zeroBranchOption, boolean inZeroBranch, NormalDistribution distribution) {
Node node = nodes[currentNode];
//biggestPayoff = 0;
//smallestPayoff = 0;
if (node.isLeaf()) {
if (inZeroBranch) {
//array[currentNode] = 0;
array[currentNode] = negateValues ? -node.getValue() + biggestPayoff: node.getValue() - smallestPayoff;
}
else {
array[currentNode] = negateValues ? -node.getValue() + biggestPayoff: node.getValue() - smallestPayoff;
}
return array[currentNode];
}
array[currentNode] = 0;
for(Action action : node.actions) {
double probability = 0;
if (node.getPlayer() == 0) {
probability = action.getProbability();
} else if (node.getPlayer() == 1){
probability = strategyP1[node.getInformationSet()].get(action.getName());
} else {
probability = strategyP2[node.getInformationSet()].get(action.getName());
}
if (null == distribution) {
probability = inZeroBranch ? 0 : probability;
array[currentNode] += probability * (fillExpectedValueArrayRecursive(array, action.childId, strategyP1, strategyP2, negateValues, zeroBranchOption, probability == 0, distribution));
} else {
array[currentNode] += probability * fillExpectedValueArrayRecursive(array, action.childId, strategyP1, strategyP2, negateValues, zeroBranchOption, probability == 0, distribution) + distribution.sample();
}
}
return array[currentNode];
}
示例13: testEquilibriumEvalutationKuhnNoise
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
@Test
public void testEquilibriumEvalutationKuhnNoise() {
Game kuhnGame = new Game();
kuhnGame.createGameFromFileZerosumPackageFormat(TestConfiguration.zerosumGamesFolder + "kuhn.txt");
SequenceFormLPSolver solverP1 = new SequenceFormLPSolver(kuhnGame, 1);
SequenceFormLPSolver solverP2 = new SequenceFormLPSolver(kuhnGame, 2);
solverP1.solveGame();
solverP2.solveGame();
TObjectDoubleMap<String>[] strategyP1 = solverP1.getInformationSetActionProbabilities();
TObjectDoubleMap<String>[] strategyP2 = solverP2.getInformationSetActionProbabilities();
// get negated expected values
double[] nodeEvaluationTable = kuhnGame.getExpectedValuesForNodes(strategyP1, strategyP2, true);
for (double noise = 0.1; noise < 1; noise += 0.1) {
// Add Gaussian noise to evaluations
NormalDistribution distribution = new NormalDistribution(0, noise);
for (int iteration = 0; iteration < 100; iteration++) {
for (int i = 0; i < nodeEvaluationTable.length; i++) {
nodeEvaluationTable[i] += distribution.sample();
}
// Compute the best strategy to commit to when the limited look-ahead player knows how much can be achieved from a node in (some) equilibrium
LimitedLookAheadOpponentSolver solver = new LimitedLookAheadOpponentSolver(kuhnGame, 1, nodeEvaluationTable, 1);
//solver.writeModelToFile(TestConfiguration.lpModelsFolder + "kuhnp1-limited-look-ahead.lp");
solver.writeModelToFile(TestConfiguration.lpModelsFolder + "equilibrium-kuhn-limited-look-ahead.lp");
solver.solveGame();
assertTrue(solverP1.getValueOfGame() <= solver.getValueOfGame());
}}
}
示例14: getNormalVector
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
/**
* @return Vector of iid normally distributed random variables
*/
public static double [] getNormalVector(int D) {
RandomGenerator rng = new Well44497b(Prng.nextLong());
double [] ret = new double[D];
NormalDistribution N = new NormalDistribution(rng, 0, 1, 1e-6);
for(int i=0; i<D; i++) {
ret[i] = N.sample();
}
return ret;
}
示例15: generateNoiseVector
import org.apache.commons.math3.distribution.NormalDistribution; //导入方法依赖的package包/类
public static Vector2D generateNoiseVector(NormalDistribution distribution) {
return new Vector2D(distribution.sample(), distribution.sample());
}