当前位置: 首页>>代码示例>>Java>>正文


Java PolynomialSplineFunction.getPolynomials方法代码示例

本文整理汇总了Java中org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction.getPolynomials方法的典型用法代码示例。如果您正苦于以下问题:Java PolynomialSplineFunction.getPolynomials方法的具体用法?Java PolynomialSplineFunction.getPolynomials怎么用?Java PolynomialSplineFunction.getPolynomials使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction的用法示例。


在下文中一共展示了PolynomialSplineFunction.getPolynomials方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: verifyConsistency

import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction; //导入方法依赖的package包/类
/**
 * Verifies that interpolating polynomials satisfy consistency requirement:
 *    adjacent polynomials must agree through two derivatives at knot points
 */
protected void verifyConsistency(PolynomialSplineFunction f, double x[])
    {
    PolynomialFunction polynomials[] = f.getPolynomials();
    for (int i = 1; i < x.length - 2; i++) {
        // evaluate polynomials and derivatives at x[i + 1]
        Assert.assertEquals(polynomials[i].value(x[i +1] - x[i]), polynomials[i + 1].value(0), 0.1);
        Assert.assertEquals(polynomials[i].derivative().value(x[i +1] - x[i]),
                            polynomials[i + 1].derivative().value(0), 0.5);
        Assert.assertEquals(polynomials[i].polynomialDerivative().derivative().value(x[i +1] - x[i]),
                            polynomials[i + 1].polynomialDerivative().derivative().value(0), 0.5);
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:17,代码来源:SplineInterpolatorTest.java

示例2: addLinearExtrapolationToBorders

import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction; //导入方法依赖的package包/类
public static PolynomialSplineFunction addLinearExtrapolationToBorders(PolynomialSplineFunction spline, int minFrame, int maxFrame) {
    PolynomialFunction[] polynomials = spline.getPolynomials();
    double[] knots = spline.getKnots();

    boolean addToBeginning = knots[0] != minFrame;
    boolean addToEnd = knots[knots.length - 1] != maxFrame;
    int sizeIncrease = 0 + (addToBeginning ? 1 : 0) + (addToEnd ? 1 : 0);
    if(!addToBeginning && !addToEnd) {
        return spline; //do nothing
    }

    //construct new knots and polynomial arrays
    double[] newKnots = new double[knots.length + sizeIncrease];
    PolynomialFunction[] newPolynomials = new PolynomialFunction[polynomials.length + sizeIncrease];
    //add to beginning
    if(addToBeginning) {
        //add knot
        newKnots[0] = minFrame;
        System.arraycopy(knots, 0, newKnots, 1, knots.length);
        //add function
        double derivativeAtFirstKnot = polynomials[0].derivative().value(0);
        double valueAtFirstKnot = spline.value(knots[0]);
        PolynomialFunction beginningFunction = new PolynomialFunction(new double[]{valueAtFirstKnot - (knots[0] - minFrame) * derivativeAtFirstKnot, derivativeAtFirstKnot});
        newPolynomials[0] = beginningFunction;
        System.arraycopy(polynomials, 0, newPolynomials, 1, polynomials.length);
    } else {
        System.arraycopy(knots, 0, newKnots, 0, knots.length);
        System.arraycopy(polynomials, 0, newPolynomials, 0, polynomials.length);
    }
    //add to end
    if(addToEnd) {
        //add knot
        newKnots[newKnots.length - 1] = maxFrame;
        //add function
        double derivativeAtLastKnot = polynomials[polynomials.length - 1].polynomialDerivative().value(knots[knots.length - 1] - knots[knots.length - 2]);
        double valueAtLastKnot = spline.value(knots[knots.length - 1]);
        PolynomialFunction endFunction = new PolynomialFunction(new double[]{valueAtLastKnot, derivativeAtLastKnot});
        newPolynomials[newPolynomials.length - 1] = endFunction;
    }

    return new PolynomialSplineFunction(newKnots, newPolynomials);

}
 
开发者ID:zitmen,项目名称:thunderstorm,代码行数:44,代码来源:CorrelationDriftEstimator.java


注:本文中的org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction.getPolynomials方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。