本文整理汇总了Java中org.apache.commons.math.stat.descriptive.SummaryStatistics.newInstance方法的典型用法代码示例。如果您正苦于以下问题:Java SummaryStatistics.newInstance方法的具体用法?Java SummaryStatistics.newInstance怎么用?Java SummaryStatistics.newInstance使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math.stat.descriptive.SummaryStatistics
的用法示例。
在下文中一共展示了SummaryStatistics.newInstance方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testTwoSampleTHomoscedastic
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
public void testTwoSampleTHomoscedastic() throws Exception {
double[] sample1 ={2, 4, 6, 8, 10, 97};
double[] sample2 = {4, 6, 8, 10, 16};
SummaryStatistics sampleStats1 = SummaryStatistics.newInstance();
for (int i = 0; i < sample1.length; i++) {
sampleStats1.addValue(sample1[i]);
}
SummaryStatistics sampleStats2 = SummaryStatistics.newInstance();
for (int i = 0; i < sample2.length; i++) {
sampleStats2.addValue(sample2[i]);
}
// Target comparison values computed using R version 1.8.1 (Linux version)
assertEquals("two sample homoscedastic t stat", 0.73096310086,
TestUtils.homoscedasticT(sample1, sample2), 10E-11);
assertEquals("two sample homoscedastic p value", 0.4833963785,
TestUtils.homoscedasticTTest(sampleStats1, sampleStats2), 1E-10);
assertTrue("two sample homoscedastic t-test reject",
TestUtils.homoscedasticTTest(sample1, sample2, 0.49));
assertTrue("two sample homoscedastic t-test accept",
!TestUtils.homoscedasticTTest(sample1, sample2, 0.48));
}
示例2: testTwoSampleTHomoscedastic
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
public void testTwoSampleTHomoscedastic() throws Exception {
double[] sample1 ={2, 4, 6, 8, 10, 97};
double[] sample2 = {4, 6, 8, 10, 16};
SummaryStatistics sampleStats1 = SummaryStatistics.newInstance();
for (int i = 0; i < sample1.length; i++) {
sampleStats1.addValue(sample1[i]);
}
SummaryStatistics sampleStats2 = SummaryStatistics.newInstance();
for (int i = 0; i < sample2.length; i++) {
sampleStats2.addValue(sample2[i]);
}
// Target comparison values computed using R version 1.8.1 (Linux version)
assertEquals("two sample homoscedastic t stat", 0.73096310086,
testStatistic.homoscedasticT(sample1, sample2), 10E-11);
assertEquals("two sample homoscedastic p value", 0.4833963785,
testStatistic.homoscedasticTTest(sampleStats1, sampleStats2), 1E-10);
assertTrue("two sample homoscedastic t-test reject",
testStatistic.homoscedasticTTest(sample1, sample2, 0.49));
assertTrue("two sample homoscedastic t-test accept",
!testStatistic.homoscedasticTTest(sample1, sample2, 0.48));
}
示例3: testUnivariateImpl
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
/**
* Test StorelessDescriptiveStatistics
*/
public void testUnivariateImpl() throws Exception {
SummaryStatistics u = SummaryStatistics.newInstance(SummaryStatisticsImpl.class);
loadStats("data/PiDigits.txt", u);
assertEquals("PiDigits: std", std, u.getStandardDeviation(), .0000000000001);
assertEquals("PiDigits: mean", mean, u.getMean(), .0000000000001);
loadStats("data/Mavro.txt", u);
assertEquals("Mavro: std", std, u.getStandardDeviation(), .00000000000001);
assertEquals("Mavro: mean", mean, u.getMean(), .00000000000001);
//loadStats("data/Michelso.txt");
//assertEquals("Michelso: std", std, u.getStandardDeviation(), .00000000000001);
//assertEquals("Michelso: mean", mean, u.getMean(), .00000000000001);
loadStats("data/NumAcc1.txt", u);
assertEquals("NumAcc1: std", std, u.getStandardDeviation(), .00000000000001);
assertEquals("NumAcc1: mean", mean, u.getMean(), .00000000000001);
//loadStats("data/NumAcc2.txt");
//assertEquals("NumAcc2: std", std, u.getStandardDeviation(), .000000001);
//assertEquals("NumAcc2: mean", mean, u.getMean(), .00000000000001);
}
示例4: testNextGaussian
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
/** test failure modes and distribution of nextGaussian() */
public void testNextGaussian() {
try {
double x = randomData.nextGaussian(0,0);
fail("zero sigma -- IllegalArgumentException expected");
} catch (IllegalArgumentException ex) {
;
}
SummaryStatistics u = SummaryStatistics.newInstance();
for (int i = 0; i<largeSampleSize; i++) {
u.addValue(randomData.nextGaussian(0,1));
}
double xbar = u.getMean();
double s = u.getStandardDeviation();
double n = (double) u.getN();
/* t-test at .001-level TODO: replace with externalized t-test, with
* test statistic defined in TestStatistic
*/
assertTrue(Math.abs(xbar)/(s/Math.sqrt(n))< 3.29);
}
示例5: computeStats
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
/**
* Computes sampleStats
*
* @throws IOException if an IOError occurs
*/
public void computeStats() throws IOException {
String str = null;
double val = 0.0;
sampleStats = SummaryStatistics.newInstance();
while ((str = inputStream.readLine()) != null) {
val = new Double(str).doubleValue();
sampleStats.addValue(val);
}
inputStream.close();
inputStream = null;
}
示例6: setUp
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
protected void setUp() throws Exception {
descriptives = DescriptiveStatistics.newInstance();
summaries = SummaryStatistics.newInstance();
certifiedValues = new HashMap();
loadData();
}
示例7: testNextDigest
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
/**
* Generate 1000 random values and make sure they look OK.<br>
* Note that there is a non-zero (but very small) probability that
* these tests will fail even if the code is working as designed.
*/
public void testNextDigest() throws Exception{
double next = 0.0;
double tolerance = 0.1;
vs.computeDistribution();
assertTrue("empirical distribution property",
vs.getEmpiricalDistribution() != null);
SummaryStatistics stats = SummaryStatistics.newInstance();
for (int i = 1; i < 1000; i++) {
next = vs.getNext();
stats.addValue(next);
}
assertEquals("mean", 5.069831575018909, stats.getMean(), tolerance);
assertEquals
("std dev", 1.0173699343977738, stats.getStandardDeviation(),
tolerance);
vs.computeDistribution(500);
stats = SummaryStatistics.newInstance();
for (int i = 1; i < 1000; i++) {
next = vs.getNext();
stats.addValue(next);
}
assertEquals("mean", 5.069831575018909, stats.getMean(), tolerance);
assertEquals
("std dev", 1.0173699343977738, stats.getStandardDeviation(),
tolerance);
}
示例8: tstGen
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
private void tstGen(double tolerance)throws Exception {
empiricalDistribution.load(url);
SummaryStatistics stats = SummaryStatistics.newInstance();
for (int i = 1; i < 1000; i++) {
stats.addValue(empiricalDistribution.getNextValue());
}
assertEquals("mean", stats.getMean(),5.069831575018909,tolerance);
assertEquals
("std dev", stats.getStandardDeviation(),1.0173699343977738,tolerance);
}
示例9: tstDoubleGen
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
private void tstDoubleGen(double tolerance)throws Exception {
empiricalDistribution2.load(dataArray);
SummaryStatistics stats = SummaryStatistics.newInstance();
for (int i = 1; i < 1000; i++) {
stats.addValue(empiricalDistribution2.getNextValue());
}
assertEquals("mean", stats.getMean(),5.069831575018909,tolerance);
assertEquals
("std dev", stats.getStandardDeviation(),1.0173699343977738,tolerance);
}
示例10: fillBinStats
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
/**
* Fills binStats array (second pass through data file).
*
* @param in object providing access to the data
* @throws IOException if an IO error occurs
*/
private void fillBinStats(Object in) throws IOException {
// Load array of bin upper bounds -- evenly spaced from min - max
double min = sampleStats.getMin();
double max = sampleStats.getMax();
double delta = (max - min)/(new Double(binCount)).doubleValue();
double[] binUpperBounds = new double[binCount];
binUpperBounds[0] = min + delta;
for (int i = 1; i< binCount - 1; i++) {
binUpperBounds[i] = binUpperBounds[i-1] + delta;
}
binUpperBounds[binCount -1] = max;
// Initialize binStats ArrayList
if (!binStats.isEmpty()) {
binStats.clear();
}
for (int i = 0; i < binCount; i++) {
SummaryStatistics stats = SummaryStatistics.newInstance();
binStats.add(i,stats);
}
// Filling data in binStats Array
DataAdapterFactory aFactory = new DataAdapterFactory();
DataAdapter da = aFactory.getAdapter(in);
try {
da.computeBinStats(min, delta);
} catch (Exception e) {
if(e instanceof RuntimeException){
throw new RuntimeException(e.getMessage());
}else{
throw new IOException(e.getMessage());
}
}
// Assign upperBounds based on bin counts
upperBounds = new double[binCount];
upperBounds[0] =
((double)((SummaryStatistics)binStats.get(0)).getN())/
(double)sampleStats.getN();
for (int i = 1; i < binCount-1; i++) {
upperBounds[i] = upperBounds[i-1] +
((double)((SummaryStatistics)binStats.get(i)).getN())/
(double)sampleStats.getN();
}
upperBounds[binCount-1] = 1.0d;
}
示例11: setUp
import org.apache.commons.math.stat.descriptive.SummaryStatistics; //导入方法依赖的package包/类
public void setUp() {
tooShortStats = SummaryStatistics.newInstance();
tooShortStats.addValue(0d);
}