当前位置: 首页>>代码示例>>Java>>正文


Java StatUtils.meanDifference方法代码示例

本文整理汇总了Java中org.apache.commons.math.stat.StatUtils.meanDifference方法的典型用法代码示例。如果您正苦于以下问题:Java StatUtils.meanDifference方法的具体用法?Java StatUtils.meanDifference怎么用?Java StatUtils.meanDifference使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在org.apache.commons.math.stat.StatUtils的用法示例。


在下文中一共展示了StatUtils.meanDifference方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: pairedT

import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
 * Computes a paired, 2-sample t-statistic based on the data in the input 
 * arrays.  The t-statistic returned is equivalent to what would be returned by
 * computing the one-sample t-statistic {@link #t(double, double[])}, with
 * <code>mu = 0</code> and the sample array consisting of the (signed) 
 * differences between corresponding entries in <code>sample1</code> and 
 * <code>sample2.</code>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>The input arrays must have the same length and their common length
 * must be at least 2.
 * </li></ul></p>
 *
 * @param sample1 array of sample data values
 * @param sample2 array of sample data values
 * @return t statistic
 * @throws IllegalArgumentException if the precondition is not met
 * @throws MathException if the statistic can not be computed do to a
 *         convergence or other numerical error.
 */
public double pairedT(double[] sample1, double[] sample2)
    throws IllegalArgumentException, MathException {
    if ((sample1 == null) || (sample2 == null ||
            Math.min(sample1.length, sample2.length) < 2)) {
        throw new IllegalArgumentException("insufficient data for t statistic");
    }
    double meanDifference = StatUtils.meanDifference(sample1, sample2);
    return t(meanDifference, 0,  
            StatUtils.varianceDifference(sample1, sample2, meanDifference),
            (double) sample1.length);
}
 
开发者ID:cacheonix,项目名称:cacheonix-core,代码行数:32,代码来源:TTestImpl.java

示例2: pairedTTest

import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
 * Returns the <i>observed significance level</i>, or 
 * <i> p-value</i>, associated with a paired, two-sample, two-tailed t-test 
 * based on the data in the input arrays.
 * <p>
 * The number returned is the smallest significance level
 * at which one can reject the null hypothesis that the mean of the paired
 * differences is 0 in favor of the two-sided alternative that the mean paired 
 * difference is not equal to 0. For a one-sided test, divide the returned 
 * value by 2.</p>
 * <p>
 * This test is equivalent to a one-sample t-test computed using
 * {@link #tTest(double, double[])} with <code>mu = 0</code> and the sample
 * array consisting of the signed differences between corresponding elements of 
 * <code>sample1</code> and <code>sample2.</code></p>
 * <p>
 * <strong>Usage Note:</strong><br>
 * The validity of the p-value depends on the assumptions of the parametric
 * t-test procedure, as discussed 
 * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
 * here</a></p>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>The input array lengths must be the same and their common length must
 * be at least 2.
 * </li></ul></p>
 *
 * @param sample1 array of sample data values
 * @param sample2 array of sample data values
 * @return p-value for t-test
 * @throws IllegalArgumentException if the precondition is not met
 * @throws MathException if an error occurs computing the p-value
 */
public double pairedTTest(double[] sample1, double[] sample2)
    throws IllegalArgumentException, MathException {
    double meanDifference = StatUtils.meanDifference(sample1, sample2);
    return tTest(meanDifference, 0, 
            StatUtils.varianceDifference(sample1, sample2, meanDifference), 
            (double) sample1.length);
}
 
开发者ID:cacheonix,项目名称:cacheonix-core,代码行数:41,代码来源:TTestImpl.java

示例3: pairedTTest

import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
 * Returns the <i>observed significance level</i>, or
 * <i> p-value</i>, associated with a paired, two-sample, two-tailed t-test
 * based on the data in the input arrays.
 * <p>
 * The number returned is the smallest significance level
 * at which one can reject the null hypothesis that the mean of the paired
 * differences is 0 in favor of the two-sided alternative that the mean paired
 * difference is not equal to 0. For a one-sided test, divide the returned
 * value by 2.</p>
 * <p>
 * This test is equivalent to a one-sample t-test computed using
 * {@link #tTest(double, double[])} with <code>mu = 0</code> and the sample
 * array consisting of the signed differences between corresponding elements of
 * <code>sample1</code> and <code>sample2.</code></p>
 * <p>
 * <strong>Usage Note:</strong><br>
 * The validity of the p-value depends on the assumptions of the parametric
 * t-test procedure, as discussed
 * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
 * here</a></p>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>The input array lengths must be the same and their common length must
 * be at least 2.
 * </li></ul></p>
 *
 * @param sample1 array of sample data values
 * @param sample2 array of sample data values
 * @return p-value for t-test
 * @throws IllegalArgumentException if the precondition is not met
 * @throws MathException if an error occurs computing the p-value
 */
public double pairedTTest(double[] sample1, double[] sample2)
    throws IllegalArgumentException, MathException {
    double meanDifference = StatUtils.meanDifference(sample1, sample2);
    return tTest(meanDifference, 0,
            StatUtils.varianceDifference(sample1, sample2, meanDifference),
            sample1.length);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:41,代码来源:TTestImpl.java

示例4: pairedT

import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
 * Computes a paired, 2-sample t-statistic based on the data in the input
 * arrays.  The t-statistic returned is equivalent to what would be returned by
 * computing the one-sample t-statistic {@link #t(double, double[])}, with
 * <code>mu = 0</code> and the sample array consisting of the (signed)
 * differences between corresponding entries in <code>sample1</code> and
 * <code>sample2.</code>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>The input arrays must have the same length and their common length
 * must be at least 2.
 * </li></ul></p>
 *
 * @param sample1 array of sample data values
 * @param sample2 array of sample data values
 * @return t statistic
 * @throws IllegalArgumentException if the precondition is not met
 * @throws MathException if the statistic can not be computed do to a
 *         convergence or other numerical error.
 */
public double pairedT(double[] sample1, double[] sample2)
    throws IllegalArgumentException, MathException {
    checkSampleData(sample1);
    checkSampleData(sample2);
    double meanDifference = StatUtils.meanDifference(sample1, sample2);
    return t(meanDifference, 0,
             StatUtils.varianceDifference(sample1, sample2, meanDifference),
             sample1.length);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:30,代码来源:TTestImpl.java

示例5: pairedT

import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
 * Computes a paired, 2-sample t-statistic based on the data in the input 
 * arrays.  The t-statistic returned is equivalent to what would be returned by
 * computing the one-sample t-statistic {@link #t(double, double[])}, with
 * <code>mu = 0</code> and the sample array consisting of the (signed) 
 * differences between corresponding entries in <code>sample1</code> and 
 * <code>sample2.</code>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>The input arrays must have the same length and their common length
 * must be at least 2.
 * </li></ul></p>
 *
 * @param sample1 array of sample data values
 * @param sample2 array of sample data values
 * @return t statistic
 * @throws IllegalArgumentException if the precondition is not met
 * @throws MathException if the statistic can not be computed do to a
 *         convergence or other numerical error.
 */
public double pairedT(double[] sample1, double[] sample2)
    throws IllegalArgumentException, MathException {
    checkSampleData(sample1);
    checkSampleData(sample2);
    double meanDifference = StatUtils.meanDifference(sample1, sample2);
    return t(meanDifference, 0,  
            StatUtils.varianceDifference(sample1, sample2, meanDifference),
            sample1.length);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:30,代码来源:TTestImpl.java

示例6: pairedT

import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
 * Computes a paired, 2-sample t-statistic based on the data in the input
 * arrays.  The t-statistic returned is equivalent to what would be returned by
 * computing the one-sample t-statistic {@link #t(double, double[])}, with
 * <code>mu = 0</code> and the sample array consisting of the (signed)
 * differences between corresponding entries in <code>sample1</code> and
 * <code>sample2.</code>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>The input arrays must have the same length and their common length
 * must be at least 2.
 * </li></ul></p>
 *
 * @param sample1 array of sample data values
 * @param sample2 array of sample data values
 * @return t statistic
 * @throws IllegalArgumentException if the precondition is not met
 * @throws MathException if the statistic can not be computed do to a
 *         convergence or other numerical error.
 */
public double pairedT(double[] sample1, double[] sample2)
    throws IllegalArgumentException, MathException {
    checkSampleData(sample1);
    checkSampleData(sample2);
    double meanDifference = StatUtils.meanDifference(sample1, sample2);
    return t(meanDifference, 0,
            StatUtils.varianceDifference(sample1, sample2, meanDifference),
            sample1.length);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:30,代码来源:TTestImpl.java

示例7: pairedTTest

import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
 * Returns the <i>observed significance level</i>, or 
 * <i> p-value</i>, associated with a paired, two-sample, two-tailed t-test 
 * based on the data in the input arrays.
 * <p>
 * The number returned is the smallest significance level
 * at which one can reject the null hypothesis that the mean of the paired
 * differences is 0 in favor of the two-sided alternative that the mean paired 
 * difference is not equal to 0. For a one-sided test, divide the returned 
 * value by 2.</p>
 * <p>
 * This test is equivalent to a one-sample t-test computed using
 * {@link #tTest(double, double[])} with <code>mu = 0</code> and the sample
 * array consisting of the signed differences between corresponding elements of 
 * <code>sample1</code> and <code>sample2.</code></p>
 * <p>
 * <strong>Usage Note:</strong><br>
 * The validity of the p-value depends on the assumptions of the parametric
 * t-test procedure, as discussed 
 * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
 * here</a></p>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>The input array lengths must be the same and their common length must
 * be at least 2.
 * </li></ul></p>
 *
 * @param sample1 array of sample data values
 * @param sample2 array of sample data values
 * @return p-value for t-test
 * @throws IllegalArgumentException if the precondition is not met
 * @throws MathException if an error occurs computing the p-value
 */
public double pairedTTest(double[] sample1, double[] sample2)
    throws IllegalArgumentException, MathException {
    double meanDifference = StatUtils.meanDifference(sample1, sample2);
    return tTest(meanDifference, 0, 
            StatUtils.varianceDifference(sample1, sample2, meanDifference), 
            sample1.length);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:41,代码来源:TTestImpl.java

示例8: pairedT

import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
 * Computes a paired, 2-sample t-statistic based on the data in the input 
 * arrays.  The t-statistic returned is equivalent to what would be returned by
 * computing the one-sample t-statistic {@link #t(double, double[])}, with
 * <code>mu = 0</code> and the sample array consisting of the (signed) 
 * differences between corresponding entries in <code>sample1</code> and 
 * <code>sample2.</code>
 * <p>
 * <strong>Preconditions</strong>: <ul>
 * <li>The input arrays must have the same length and their common length
 * must be at least 2.
 * </li></ul>
 *
 * @param sample1 array of sample data values
 * @param sample2 array of sample data values
 * @return t statistic
 * @throws IllegalArgumentException if the precondition is not met
 * @throws MathException if the statistic can not be computed do to a
 *         convergence or other numerical error.
 */
public double pairedT(double[] sample1, double[] sample2)
    throws IllegalArgumentException, MathException {
    if ((sample1 == null) || (sample2 == null ||
            Math.min(sample1.length, sample2.length) < 2)) {
        throw new IllegalArgumentException("insufficient data for t statistic");
    }
    double meanDifference = StatUtils.meanDifference(sample1, sample2);
    return t(meanDifference, 0,  
            StatUtils.varianceDifference(sample1, sample2, meanDifference),
            (double) sample1.length);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:32,代码来源:TTestImpl.java


注:本文中的org.apache.commons.math.stat.StatUtils.meanDifference方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。