本文整理汇总了Java中org.apache.commons.math.stat.StatUtils.meanDifference方法的典型用法代码示例。如果您正苦于以下问题:Java StatUtils.meanDifference方法的具体用法?Java StatUtils.meanDifference怎么用?Java StatUtils.meanDifference使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math.stat.StatUtils
的用法示例。
在下文中一共展示了StatUtils.meanDifference方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: pairedT
import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
* Computes a paired, 2-sample t-statistic based on the data in the input
* arrays. The t-statistic returned is equivalent to what would be returned by
* computing the one-sample t-statistic {@link #t(double, double[])}, with
* <code>mu = 0</code> and the sample array consisting of the (signed)
* differences between corresponding entries in <code>sample1</code> and
* <code>sample2.</code>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input arrays must have the same length and their common length
* must be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return t statistic
* @throws IllegalArgumentException if the precondition is not met
* @throws MathException if the statistic can not be computed do to a
* convergence or other numerical error.
*/
public double pairedT(double[] sample1, double[] sample2)
throws IllegalArgumentException, MathException {
if ((sample1 == null) || (sample2 == null ||
Math.min(sample1.length, sample2.length) < 2)) {
throw new IllegalArgumentException("insufficient data for t statistic");
}
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return t(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
(double) sample1.length);
}
示例2: pairedTTest
import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
* Returns the <i>observed significance level</i>, or
* <i> p-value</i>, associated with a paired, two-sample, two-tailed t-test
* based on the data in the input arrays.
* <p>
* The number returned is the smallest significance level
* at which one can reject the null hypothesis that the mean of the paired
* differences is 0 in favor of the two-sided alternative that the mean paired
* difference is not equal to 0. For a one-sided test, divide the returned
* value by 2.</p>
* <p>
* This test is equivalent to a one-sample t-test computed using
* {@link #tTest(double, double[])} with <code>mu = 0</code> and the sample
* array consisting of the signed differences between corresponding elements of
* <code>sample1</code> and <code>sample2.</code></p>
* <p>
* <strong>Usage Note:</strong><br>
* The validity of the p-value depends on the assumptions of the parametric
* t-test procedure, as discussed
* <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
* here</a></p>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input array lengths must be the same and their common length must
* be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return p-value for t-test
* @throws IllegalArgumentException if the precondition is not met
* @throws MathException if an error occurs computing the p-value
*/
public double pairedTTest(double[] sample1, double[] sample2)
throws IllegalArgumentException, MathException {
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return tTest(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
(double) sample1.length);
}
示例3: pairedTTest
import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
* Returns the <i>observed significance level</i>, or
* <i> p-value</i>, associated with a paired, two-sample, two-tailed t-test
* based on the data in the input arrays.
* <p>
* The number returned is the smallest significance level
* at which one can reject the null hypothesis that the mean of the paired
* differences is 0 in favor of the two-sided alternative that the mean paired
* difference is not equal to 0. For a one-sided test, divide the returned
* value by 2.</p>
* <p>
* This test is equivalent to a one-sample t-test computed using
* {@link #tTest(double, double[])} with <code>mu = 0</code> and the sample
* array consisting of the signed differences between corresponding elements of
* <code>sample1</code> and <code>sample2.</code></p>
* <p>
* <strong>Usage Note:</strong><br>
* The validity of the p-value depends on the assumptions of the parametric
* t-test procedure, as discussed
* <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
* here</a></p>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input array lengths must be the same and their common length must
* be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return p-value for t-test
* @throws IllegalArgumentException if the precondition is not met
* @throws MathException if an error occurs computing the p-value
*/
public double pairedTTest(double[] sample1, double[] sample2)
throws IllegalArgumentException, MathException {
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return tTest(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
sample1.length);
}
示例4: pairedT
import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
* Computes a paired, 2-sample t-statistic based on the data in the input
* arrays. The t-statistic returned is equivalent to what would be returned by
* computing the one-sample t-statistic {@link #t(double, double[])}, with
* <code>mu = 0</code> and the sample array consisting of the (signed)
* differences between corresponding entries in <code>sample1</code> and
* <code>sample2.</code>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input arrays must have the same length and their common length
* must be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return t statistic
* @throws IllegalArgumentException if the precondition is not met
* @throws MathException if the statistic can not be computed do to a
* convergence or other numerical error.
*/
public double pairedT(double[] sample1, double[] sample2)
throws IllegalArgumentException, MathException {
checkSampleData(sample1);
checkSampleData(sample2);
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return t(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
sample1.length);
}
示例5: pairedT
import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
* Computes a paired, 2-sample t-statistic based on the data in the input
* arrays. The t-statistic returned is equivalent to what would be returned by
* computing the one-sample t-statistic {@link #t(double, double[])}, with
* <code>mu = 0</code> and the sample array consisting of the (signed)
* differences between corresponding entries in <code>sample1</code> and
* <code>sample2.</code>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input arrays must have the same length and their common length
* must be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return t statistic
* @throws IllegalArgumentException if the precondition is not met
* @throws MathException if the statistic can not be computed do to a
* convergence or other numerical error.
*/
public double pairedT(double[] sample1, double[] sample2)
throws IllegalArgumentException, MathException {
checkSampleData(sample1);
checkSampleData(sample2);
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return t(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
sample1.length);
}
示例6: pairedT
import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
* Computes a paired, 2-sample t-statistic based on the data in the input
* arrays. The t-statistic returned is equivalent to what would be returned by
* computing the one-sample t-statistic {@link #t(double, double[])}, with
* <code>mu = 0</code> and the sample array consisting of the (signed)
* differences between corresponding entries in <code>sample1</code> and
* <code>sample2.</code>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input arrays must have the same length and their common length
* must be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return t statistic
* @throws IllegalArgumentException if the precondition is not met
* @throws MathException if the statistic can not be computed do to a
* convergence or other numerical error.
*/
public double pairedT(double[] sample1, double[] sample2)
throws IllegalArgumentException, MathException {
checkSampleData(sample1);
checkSampleData(sample2);
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return t(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
sample1.length);
}
示例7: pairedTTest
import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
* Returns the <i>observed significance level</i>, or
* <i> p-value</i>, associated with a paired, two-sample, two-tailed t-test
* based on the data in the input arrays.
* <p>
* The number returned is the smallest significance level
* at which one can reject the null hypothesis that the mean of the paired
* differences is 0 in favor of the two-sided alternative that the mean paired
* difference is not equal to 0. For a one-sided test, divide the returned
* value by 2.</p>
* <p>
* This test is equivalent to a one-sample t-test computed using
* {@link #tTest(double, double[])} with <code>mu = 0</code> and the sample
* array consisting of the signed differences between corresponding elements of
* <code>sample1</code> and <code>sample2.</code></p>
* <p>
* <strong>Usage Note:</strong><br>
* The validity of the p-value depends on the assumptions of the parametric
* t-test procedure, as discussed
* <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
* here</a></p>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input array lengths must be the same and their common length must
* be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return p-value for t-test
* @throws IllegalArgumentException if the precondition is not met
* @throws MathException if an error occurs computing the p-value
*/
public double pairedTTest(double[] sample1, double[] sample2)
throws IllegalArgumentException, MathException {
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return tTest(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
sample1.length);
}
示例8: pairedT
import org.apache.commons.math.stat.StatUtils; //导入方法依赖的package包/类
/**
* Computes a paired, 2-sample t-statistic based on the data in the input
* arrays. The t-statistic returned is equivalent to what would be returned by
* computing the one-sample t-statistic {@link #t(double, double[])}, with
* <code>mu = 0</code> and the sample array consisting of the (signed)
* differences between corresponding entries in <code>sample1</code> and
* <code>sample2.</code>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input arrays must have the same length and their common length
* must be at least 2.
* </li></ul>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return t statistic
* @throws IllegalArgumentException if the precondition is not met
* @throws MathException if the statistic can not be computed do to a
* convergence or other numerical error.
*/
public double pairedT(double[] sample1, double[] sample2)
throws IllegalArgumentException, MathException {
if ((sample1 == null) || (sample2 == null ||
Math.min(sample1.length, sample2.length) < 2)) {
throw new IllegalArgumentException("insufficient data for t statistic");
}
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return t(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
(double) sample1.length);
}