本文整理汇总了Java中org.apache.commons.math.special.Gamma.regularizedGammaP方法的典型用法代码示例。如果您正苦于以下问题:Java Gamma.regularizedGammaP方法的具体用法?Java Gamma.regularizedGammaP怎么用?Java Gamma.regularizedGammaP使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math.special.Gamma
的用法示例。
在下文中一共展示了Gamma.regularizedGammaP方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: evaluate
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
@Override
public Double evaluate(final Double x) {
try {
return Gamma.regularizedGammaP(_a, x, _eps, _maxIter);
} catch (final org.apache.commons.math.MathException e) {
throw new MathException(e);
}
}
示例2: callAndUpdate
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
@Override
boolean callAndUpdate(int from, int to, int k, int n, int n0) {
if (k == 0 || n < 4) {
return false;
}
totalMigs.incrementAndGet();
logMigSize.addAndGet(Math.log(n));
boolean pass = false;
try {
double lambda = n * seqErrorRate;
double p = Gamma.regularizedGammaP(k, lambda) +
0.5 * Math.exp(k * Math.log(lambda) - lambda - Gamma.logGamma(k + 1));
if (assemblerParameters.isMinorCallerDebug()) {
results.add(new CallResult(from, to, k, n, n0, p));
}
pass = p < assemblerParameters.getPcrMinorTestPValue();
m[from][to].incrementAndGet();
pValueSum[from][to].addAndGet(p);
if (pass) {
m1[from][to].incrementAndGet();
minorReadCountSumArr[from][to].addAndGet(k);
totalReadCountSumArr[from][to].addAndGet(n);
totalReadCountSumArrNoQFilter[from][to].addAndGet(n0);
}
} catch (MathException e) {
e.printStackTrace();
}
return pass;
}
示例3: getCDF
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
/**
* {@inheritDoc}
*/
@Override
public double getCDF(final Double x) {
Validate.notNull(x, "x");
if (x < 0) {
return 0.0;
}
if ((_dofOverTwo + _lambdaOverTwo) > 1000) {
return getFraserApproxCDF(x);
}
double regGammaStart = 0;
final double halfX = x / 2.0;
final double logX = Math.log(halfX);
try {
regGammaStart = Gamma.regularizedGammaP(_dofOverTwo + _k, halfX);
} catch (final org.apache.commons.math.MathException ex) {
throw new MathException(ex);
}
double sum = _pStart * regGammaStart;
double oldSum = Double.NEGATIVE_INFINITY;
double p = _pStart;
double regGamma = regGammaStart;
double temp;
int i = _k;
// first add terms below _k
while (i > 0 && Math.abs(sum - oldSum) / sum > _eps) {
i--;
p *= (i + 1) / _lambdaOverTwo;
temp = (_dofOverTwo + i) * logX - halfX - Gamma.logGamma(_dofOverTwo + i + 1);
regGamma += Math.exp(temp);
oldSum = sum;
sum += p * regGamma;
}
p = _pStart;
regGamma = regGammaStart;
oldSum = Double.NEGATIVE_INFINITY;
i = _k;
while (Math.abs(sum - oldSum) / sum > _eps) {
i++;
p *= _lambdaOverTwo / i;
temp = (_dofOverTwo + i - 1) * logX - halfX - Gamma.logGamma(_dofOverTwo + i);
regGamma -= Math.exp(temp);
oldSum = sum;
sum += p * regGamma;
}
return sum;
}
示例4: cumulativeProbability
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
/**
* For this disbution, X, this method returns P(X < x).
*
* The implementation of this method is based on:
* <ul>
* <li>
* <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
* Chi-Squared Distribution</a>, equation (9).</li>
* <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
* Belmont, CA: Duxbury Press.</li>
* </ul>
*
* @param x the value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
public double cumulativeProbability(double x) throws MathException{
double ret;
if (x <= 0.0) {
ret = 0.0;
} else {
ret = Gamma.regularizedGammaP(getAlpha(), x / getBeta());
}
return ret;
}
示例5: cumulativeProbability
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
/**
* For this distribution, X, this method returns P(X < x).
* <p/>
* The implementation of this method is based on:
* <ul>
* <li>
* <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
* Chi-Squared Distribution</a>, equation (9).</li>
* <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
* Belmont, CA: Duxbury Press.</li>
* </ul>
*
* @param x the value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
@Override
public double cumulativeProbability(double x) throws MathException {
double ret;
if (x <= 0.0) {
ret = 0.0;
} else {
ret = Gamma.regularizedGammaP(alpha, x / beta);
}
return ret;
}
示例6: cumulativeProbability
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
/**
* For this distribution, X, this method returns P(X < x).
*
* The implementation of this method is based on:
* <ul>
* <li>
* <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
* Chi-Squared Distribution</a>, equation (9).</li>
* <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
* Belmont, CA: Duxbury Press.</li>
* </ul>
*
* @param x the value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
public double cumulativeProbability(double x) throws MathException{
double ret;
if (x <= 0.0) {
ret = 0.0;
} else {
ret = Gamma.regularizedGammaP(getAlpha(), x / getBeta());
}
return ret;
}
示例7: cumulativeProbability
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
/**
* For this distribution, {@code X}, this method returns {@code P(X < x)}.
*
* The implementation of this method is based on:
* <ul>
* <li>
* <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
* Chi-Squared Distribution</a>, equation (9).
* </li>
* <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
* Belmont, CA: Duxbury Press.
* </li>
* </ul>
*
* @param x Value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
public double cumulativeProbability(double x) throws MathException{
double ret;
if (x <= 0) {
ret = 0;
} else {
ret = Gamma.regularizedGammaP(alpha, x / beta);
}
return ret;
}
示例8: cumulativeProbability
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
/**
* For this distribution, X, this method returns P(X < x).
*
* The implementation of this method is based on:
* <ul>
* <li>
* <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
* Chi-Squared Distribution</a>, equation (9).</li>
* <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
* Belmont, CA: Duxbury Press.</li>
* </ul>
*
* @param x the value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
public double cumulativeProbability(double x) throws MathException{
double ret;
if (x <= 0.0) {
ret = 0.0;
} else {
ret = Gamma.regularizedGammaP(alpha, x / beta);
}
return ret;
}
示例9: cumulativeProbability
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
/**
* For this distribution, X, this method returns P(X < x).
*
* The implementation of this method is based on:
* <ul>
* <li>
* <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
* Chi-Squared Distribution</a>, equation (9).</li>
* <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
* Belmont, CA: Duxbury Press.</li>
* </ul>
*
* @param x the value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
public double cumulativeProbability(double x) throws MathException{
double ret;
if (x <= 0.0) {
ret = 0.0;
} else {
ret = Gamma.regularizedGammaP(getAlpha(), x / getBeta());
}
return ret;
}
示例10: cumulativeProbability
import org.apache.commons.math.special.Gamma; //导入方法依赖的package包/类
/**
* For this distribution, X, this method returns P(X < x).
* <p/>
* The implementation of this method is based on:
* <ul>
* <li>
* <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
* Chi-Squared Distribution</a>, equation (9).</li>
* <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
* Belmont, CA: Duxbury Press.</li>
* </ul>
*
* @param x the value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
public double cumulativeProbability(double x) throws MathException {
double ret;
if (x <= 0.0) {
ret = 0.0;
} else {
ret = Gamma.regularizedGammaP(alpha, x / beta);
}
return ret;
}