本文整理汇总了Java中org.apache.commons.math.linear.Array2DRowRealMatrix.getDataRef方法的典型用法代码示例。如果您正苦于以下问题:Java Array2DRowRealMatrix.getDataRef方法的具体用法?Java Array2DRowRealMatrix.getDataRef怎么用?Java Array2DRowRealMatrix.getDataRef使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.commons.math.linear.Array2DRowRealMatrix
的用法示例。
在下文中一共展示了Array2DRowRealMatrix.getDataRef方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: calculateHat
import org.apache.commons.math.linear.Array2DRowRealMatrix; //导入方法依赖的package包/类
/**
* <p>Compute the "hat" matrix.
* </p>
* <p>The hat matrix is defined in terms of the design matrix X
* by X(X<sup>T</sup>X)<sup>-1</sup>X<sup>T</sup>
* </p>
* <p>The implementation here uses the QR decomposition to compute the
* hat matrix as Q I<sub>p</sub>Q<sup>T</sup> where I<sub>p</sub> is the
* p-dimensional identity matrix augmented by 0's. This computational
* formula is from "The Hat Matrix in Regression and ANOVA",
* David C. Hoaglin and Roy E. Welsch,
* <i>The American Statistician</i>, Vol. 32, No. 1 (Feb., 1978), pp. 17-22.
*
* @return the hat matrix
*/
public RealMatrix calculateHat() {
// Create augmented identity matrix
RealMatrix Q = qr.getQ();
final int p = qr.getR().getColumnDimension();
final int n = Q.getColumnDimension();
Array2DRowRealMatrix augI = new Array2DRowRealMatrix(n, n);
double[][] augIData = augI.getDataRef();
for (int i = 0; i < n; i++) {
for (int j =0; j < n; j++) {
if (i == j && i < p) {
augIData[i][j] = 1d;
} else {
augIData[i][j] = 0d;
}
}
}
// Compute and return Hat matrix
return Q.multiply(augI).multiply(Q.transpose());
}
示例2: calculateHat
import org.apache.commons.math.linear.Array2DRowRealMatrix; //导入方法依赖的package包/类
/**
* <p>Compute the "hat" matrix.
* </p>
* <p>The hat matrix is defined in terms of the design matrix X
* by X(X<sup>T</sup>X)<sup>-1</sup>X<sup>T</sup>
* </p>
* <p>The implementation here uses the QR decomposition to compute the
* hat matrix as Q I<sub>p</sub>Q<sup>T</sup> where I<sub>p</sub> is the
* p-dimensional identity matrix augmented by 0's. This computational
* formula is from "The Hat Matrix in Regression and ANOVA",
* David C. Hoaglin and Roy E. Welsch,
* <i>The American Statistician</i>, Vol. 32, No. 1 (Feb., 1978), pp. 17-22.
*
* @return the hat matrix
*/
public RealMatrix calculateHat() {
// Create augmented identity matrix
RealMatrix Q = qr.getQ();
final int p = qr.getR().getColumnDimension();
final int n = Q.getColumnDimension();
Array2DRowRealMatrix augI = new Array2DRowRealMatrix(n, n);
double[][] augIData = augI.getDataRef();
for (int i = 0; i < n; i++) {
for (int j =0; j < n; j++) {
if (i == j && i < p) {
augIData[i][j] = 1d;
} else {
augIData[i][j] = 0d;
}
}
}
// Compute and return Hat matrix
return Q.multiply(augI).multiply(Q.transpose());
}
示例3: updateHighOrderDerivativesPhase2
import org.apache.commons.math.linear.Array2DRowRealMatrix; //导入方法依赖的package包/类
/** Update the high order scaled derivatives Adams integrators (phase 2).
* <p>The complete update of high order derivatives has a form similar to:
* <pre>
* r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub>
* </pre>
* this method computes the (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u part.</p>
* <p>Phase 1 of the update must already have been performed.</p>
* @param start first order scaled derivatives at step start
* @param end first order scaled derivatives at step end
* @param highOrder high order scaled derivatives, will be modified
* (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
* @see #updateHighOrderDerivativesPhase1(Array2DRowRealMatrix)
*/
public void updateHighOrderDerivativesPhase2(final double[] start,
final double[] end,
final Array2DRowRealMatrix highOrder) {
final double[][] data = highOrder.getDataRef();
for (int i = 0; i < data.length; ++i) {
final double[] dataI = data[i];
final double c1I = c1[i];
for (int j = 0; j < dataI.length; ++j) {
dataI[j] += c1I * (start[j] - end[j]);
}
}
}