本文整理汇总了Java中org.apache.avro.mapreduce.AvroJob.setOutputValueSchema方法的典型用法代码示例。如果您正苦于以下问题:Java AvroJob.setOutputValueSchema方法的具体用法?Java AvroJob.setOutputValueSchema怎么用?Java AvroJob.setOutputValueSchema使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.avro.mapreduce.AvroJob
的用法示例。
在下文中一共展示了AvroJob.setOutputValueSchema方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: setSchema
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
/** Hacked method */
private void setSchema(Job job, Schema keySchema, Schema valSchema) {
boolean isMaponly = job.getNumReduceTasks() == 0;
if (keySchema != null) {
if (isMaponly){
AvroJob.setMapOutputKeySchema(job, keySchema);
}
AvroJob.setOutputKeySchema(job, keySchema);
}
if (valSchema != null) {
if (isMaponly){
AvroJob.setMapOutputValueSchema(job, valSchema);
}
AvroJob.setOutputValueSchema(job, valSchema);
}
}
示例2: run
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
public int run(String[] args) throws Exception {
Job job = new Job(getConf());
job.setJarByClass(AVROMultipleValues.class);
job.setJobName("AVRO Multiple Values");
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(AVROMultipleValuesMapper.class);
job.setReducerClass(AVROMultipleValuesReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(AvroValue.class);
job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
AvroJob.setMapOutputValueSchema(job, Multiple.SCHEMA$);
AvroJob.setOutputValueSchema(job, Multiple.SCHEMA$);
job.setNumReduceTasks(1);
return (job.waitForCompletion(true) ? 0 : 1);
}
示例3: process
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
@Override
public void process(Annotation annotation, Job job, Object target)
throws ToolException {
AvroJobInfo avroInfo = (AvroJobInfo)annotation;
if (avroInfo.inputKeySchema() != AvroDefault.class) {
AvroJob.setInputKeySchema(job, getSchema(avroInfo.inputKeySchema()));
}
if (avroInfo.inputValueSchema() != AvroDefault.class) {
AvroJob.setInputValueSchema(job, getSchema(avroInfo.inputValueSchema()));
}
if (avroInfo.outputKeySchema() != AvroDefault.class) {
AvroJob.setOutputKeySchema(job, getSchema(avroInfo.outputKeySchema()));
}
if (avroInfo.outputValueSchema() != AvroDefault.class) {
AvroJob.setOutputValueSchema(job, getSchema(avroInfo.outputValueSchema()));
}
if (avroInfo.mapOutputKeySchema() != AvroDefault.class) {
AvroJob.setMapOutputKeySchema(job, getSchema(avroInfo.mapOutputKeySchema()));
}
if (avroInfo.mapOutputValueSchema() != AvroDefault.class) {
AvroJob.setMapOutputValueSchema(job, getSchema(avroInfo.mapOutputValueSchema()));
}
AvroSerialization.addToConfiguration(job.getConfiguration());
}
示例4: run
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
public int run(String[] args) throws Exception {
org.apache.log4j.BasicConfigurator.configure();
if (args.length != 2) {
System.err.println("Usage: MapReduceAgeCount <input path> <output path>");
return -1;
}
Job job = Job.getInstance(getConf());
job.setJarByClass(MapReduceAgeCount.class);
job.setJobName("Age Count");
// RECORDSERVICE:
// To read from a table instead of a path, comment out
// FileInputFormat.setInputPaths() and instead use:
// FileInputFormat.setInputPaths(job, new Path(args[0]));
RecordServiceConfig.setInputTable(job.getConfiguration(), null, args[0]);
// RECORDSERVICE:
// Use the RecordService version of the AvroKeyValueInputFormat
job.setInputFormatClass(
com.cloudera.recordservice.avro.mapreduce.AvroKeyValueInputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(AgeCountMapper.class);
// Set schema for input key and value.
AvroJob.setInputKeySchema(job, UserKey.getClassSchema());
AvroJob.setInputValueSchema(job, UserValue.getClassSchema());
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
job.setReducerClass(AgeCountReducer.class);
AvroJob.setOutputKeySchema(job, Schema.create(Schema.Type.STRING));
AvroJob.setOutputValueSchema(job, Schema.create(Schema.Type.INT));
return (job.waitForCompletion(true) ? 0 : 1);
}
示例5: run
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
@Override
public int run(String[] args) throws Exception {
org.apache.log4j.BasicConfigurator.configure();
if (args.length != 2) {
System.err.println("Usage: MapReduceColorCount <input path> <output path>");
return -1;
}
Job job = Job.getInstance(getConf());
job.setJarByClass(MapReduceColorCount.class);
job.setJobName("Color Count");
// RECORDSERVICE:
// To read from a table instead of a path, comment out
// FileInputFormat.setInputPaths() and instead use:
//FileInputFormat.setInputPaths(job, new Path(args[0]));
RecordServiceConfig.setInputTable(job.getConfiguration(), "rs", "users");
// RECORDSERVICE:
// Use the RecordService version of the AvroKeyInputFormat
job.setInputFormatClass(
com.cloudera.recordservice.avro.mapreduce.AvroKeyInputFormat.class);
//job.setInputFormatClass(AvroKeyInputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(ColorCountMapper.class);
AvroJob.setInputKeySchema(job, User.getClassSchema());
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
job.setReducerClass(ColorCountReducer.class);
AvroJob.setOutputKeySchema(job, Schema.create(Schema.Type.STRING));
AvroJob.setOutputValueSchema(job, Schema.create(Schema.Type.INT));
return (job.waitForCompletion(true) ? 0 : 1);
}
示例6: countColors
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
/**
* Run the MR2 color count with generic records, and return a map of favorite colors to
* the number of users.
*/
public static java.util.Map<String, Integer> countColors() throws IOException,
ClassNotFoundException, InterruptedException {
String output = TestUtil.getTempDirectory();
Path outputPath = new Path(output);
JobConf conf = new JobConf(ColorCount.class);
conf.setInt("mapreduce.job.reduces", 1);
Job job = Job.getInstance(conf);
job.setJarByClass(ColorCount.class);
job.setJobName("MR2 Color Count With Generic Records");
RecordServiceConfig.setInputTable(job.getConfiguration(), "rs", "users");
job.setInputFormatClass(
com.cloudera.recordservice.avro.mapreduce.AvroKeyInputFormat.class);
FileOutputFormat.setOutputPath(job, outputPath);
job.setMapperClass(Map.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
job.setReducerClass(Reduce.class);
AvroJob.setOutputKeySchema(job, Schema.create(Schema.Type.STRING));
AvroJob.setOutputValueSchema(job, Schema.create(Schema.Type.INT));
job.waitForCompletion(false);
// Read the result and return it. Since we set the number of reducers to 1,
// there is always just one file containing the value.
SeekableInput input = new FsInput(new Path(output + "/part-r-00000.avro"), conf);
DatumReader<GenericRecord> reader = new GenericDatumReader<GenericRecord>();
FileReader<GenericRecord> fileReader = DataFileReader.openReader(input, reader);
java.util.Map<String, Integer> colorMap = new HashMap<String, Integer>();
for (GenericRecord datum: fileReader) {
colorMap.put(datum.get(0).toString(), Integer.parseInt(datum.get(1).toString()));
}
return colorMap;
}
示例7: afterPropertiesSet
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
@Override
public void afterPropertiesSet() throws Exception {
if (avroInputKey != null) {
AvroJob.setInputKeySchema(job, resolveClass(avroInputKey).newInstance().getSchema());
}
if (avroInputValue != null) {
AvroJob.setInputValueSchema(job, resolveClass(avroInputValue).newInstance().getSchema());
}
if (avroMapOutputKey != null) {
AvroJob.setMapOutputKeySchema(job, resolveClass(avroMapOutputKey).newInstance().getSchema());
}
if (avroMapOutputValue != null) {
Class<? extends IndexedRecord> c = resolveClass(avroMapOutputValue);
IndexedRecord o = c.newInstance();
AvroJob.setMapOutputValueSchema(job, o.getSchema());
}
if (avroOutputKey != null) {
AvroJob.setOutputKeySchema(job, resolveClass(avroOutputKey).newInstance().getSchema());
}
if (avroOutputValue != null) {
AvroJob.setOutputValueSchema(job, resolveClass(avroOutputValue).newInstance().getSchema());
}
}
示例8: setOutput
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
@Override
protected void setOutput() throws JsonGenerationException,
JsonMappingException,
IOException
{
JsonNode output = get(root, "output");
// set the output path
outputDir = new Path(getText(output, "path"));
Path outputPath = new Path(outputDir, "tmp");
fs.delete(outputPath, true);
FileOutputFormat.setOutputPath(job, outputPath);
// set the column type
List<ColumnType> columnTypes = new ArrayList<ColumnType>();
for (JsonNode column : asArray(output, "columns"))
{
ColumnType type = new ColumnType();
type.setName(column.getTextValue());
type.setType("int");
columnTypes.add(type);
}
// set avro job properties
AvroJob.setOutputKeySchema(job, GenerateDictionary.getSchema());
AvroJob.setOutputValueSchema(job, Schema.create(Type.NULL));
job.setOutputFormatClass(AvroKeyOutputFormat.class);
}
示例9: submitJob
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
private void submitJob(StagedOutputJobExecutor executor, String inputPattern, String output, String clusterName, String year, String day, int numReducers)
{
List<String> inputPaths = new ArrayList<String>();
inputPaths.add(inputPattern);
final StagedOutputJob job = StagedOutputJob.createStagedJob(
_props,
_name + "-" + "usage-per-hour-" + clusterName + "-" + year + "-" + day,
inputPaths,
"/tmp" + output,
output,
_log);
final Configuration conf = job.getConfiguration();
conf.set("cluster.name", clusterName);
job.setOutputKeyClass(BytesWritable.class);
job.setOutputValueClass(BytesWritable.class);
job.setInputFormatClass(AvroKeyValueInputFormat.class);
job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
AvroJob.setInputKeySchema(job, Schema.create(Type.STRING));
AvroJob.setInputValueSchema(job, LogData.SCHEMA$);
AvroJob.setMapOutputKeySchema(job, AttemptStatsKey.SCHEMA$);
AvroJob.setMapOutputValueSchema(job, AttemptStatsValue.SCHEMA$);
AvroJob.setOutputKeySchema(job, AttemptStatsKey.SCHEMA$);
AvroJob.setOutputValueSchema(job, AttemptStatsValue.SCHEMA$);
job.setNumReduceTasks(numReducers);
job.setMapperClass(ComputeUsagePerHour.TheMapper.class);
job.setReducerClass(ComputeUsagePerHour.TheReducer.class);
executor.submit(job);
}
示例10: getContext
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
private TaskAttemptContext getContext(String nameOutput) throws IOException {
TaskAttemptContext taskContext = taskContexts.get(nameOutput);
if (taskContext != null) {
return taskContext;
}
// The following trick leverages the instantiation of a record writer via
// the job thus supporting arbitrary output formats.
context.getConfiguration().set("avro.mo.config.namedOutput",nameOutput);
Job job = new Job(context.getConfiguration());
job.setOutputFormatClass(getNamedOutputFormatClass(context, nameOutput));
Schema keySchema = keySchemas.get(nameOutput+"_KEYSCHEMA");
Schema valSchema = valSchemas.get(nameOutput+"_VALSCHEMA");
boolean isMaponly=job.getNumReduceTasks() == 0;
if(keySchema!=null)
{
if(isMaponly)
AvroJob.setMapOutputKeySchema(job,keySchema);
else
AvroJob.setOutputKeySchema(job,keySchema);
}
if(valSchema!=null)
{
if(isMaponly)
AvroJob.setMapOutputValueSchema(job,valSchema);
else
AvroJob.setOutputValueSchema(job,valSchema);
}
taskContext = new TaskAttemptContext(
job.getConfiguration(), context.getTaskAttemptID());
taskContexts.put(nameOutput, taskContext);
return taskContext;
}
示例11: execute
import org.apache.avro.mapreduce.AvroJob; //导入方法依赖的package包/类
public void execute(StagedOutputJobExecutor executor) throws IOException, InterruptedException, ExecutionException
{
for (String clusterName : _clusterNames.split(","))
{
System.out.println("Processing cluster " + clusterName);
List<JobStatsProcessing.ProcessingTask> processingTasks = JobStatsProcessing.getTasks(_fs, _logsRoot, clusterName, _jobsOutputPathRoot, _incremental, _numDays, _numDaysForced);
for (JobStatsProcessing.ProcessingTask task : processingTasks)
{
List<String> inputPaths = new ArrayList<String>();
inputPaths.add(task.inputPathFormat);
String outputPath = task.outputPath;
final StagedOutputJob job = StagedOutputJob.createStagedJob(
_props,
_name + "-parse-jobs-" + task.id,
inputPaths,
"/tmp" + outputPath,
outputPath,
_log);
job.getConfiguration().set("jobs.output.path", _jobsOutputPathRoot);
job.getConfiguration().set("logs.cluster.name", clusterName);
// 1 reducer per 12 GB of input data
long numReduceTasks = (int)Math.ceil(((double)task.totalLength) / 1024 / 1024 / 1024 / 12);
job.setOutputKeyClass(BytesWritable.class);
job.setOutputValueClass(BytesWritable.class);
job.setInputFormatClass(CombinedTextInputFormat.class);
job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
AvroJob.setOutputKeySchema(job, Schema.create(Type.STRING));
AvroJob.setOutputValueSchema(job, LogData.SCHEMA$);
job.setNumReduceTasks((int)numReduceTasks);
job.setMapperClass(ParseJobsFromLogs.TheMapper.class);
job.setReducerClass(ParseJobsFromLogs.TheReducer.class);
AvroJob.setMapOutputKeySchema(job, Schema.create(Type.STRING));
AvroJob.setMapOutputValueSchema(job, LogData.SCHEMA$);
MyAvroMultipleOutputs.addNamedOutput(job, "logs", AvroKeyValueOutputFormat.class, Schema.create(Type.STRING), LogData.SCHEMA$);
executor.submit(job);
}
executor.waitForCompletion();
}
}