本文整理汇总了Java中java.time.temporal.TemporalAmount.subtractFrom方法的典型用法代码示例。如果您正苦于以下问题:Java TemporalAmount.subtractFrom方法的具体用法?Java TemporalAmount.subtractFrom怎么用?Java TemporalAmount.subtractFrom使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类java.time.temporal.TemporalAmount
的用法示例。
在下文中一共展示了TemporalAmount.subtractFrom方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this date-time with the specified amount subtracted.
* <p>
* This returns a {@code LocalDateTime}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Period} or {@link Duration} but may be
* any other type implementing the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return a {@code LocalDateTime} based on this date-time with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public LocalDateTime minus(TemporalAmount amountToSubtract) {
if (amountToSubtract instanceof Period) {
Period periodToSubtract = (Period) amountToSubtract;
return with(date.minus(periodToSubtract), time);
}
Objects.requireNonNull(amountToSubtract, "amountToSubtract");
return (LocalDateTime) amountToSubtract.subtractFrom(this);
}
示例2: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this date-time with the specified amount subtracted.
* <p>
* This returns a {@code ZonedDateTime}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Period} or {@link Duration} but may be
* any other type implementing the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return a {@code ZonedDateTime} based on this date-time with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public ZonedDateTime minus(TemporalAmount amountToSubtract) {
if (amountToSubtract instanceof Period) {
Period periodToSubtract = (Period) amountToSubtract;
return resolveLocal(dateTime.minus(periodToSubtract));
}
Objects.requireNonNull(amountToSubtract, "amountToSubtract");
return (ZonedDateTime) amountToSubtract.subtractFrom(this);
}
示例3: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this date with the specified amount subtracted.
* <p>
* This returns a {@code LocalDate}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Period} but may be any other type implementing
* the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return a {@code LocalDate} based on this date with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public LocalDate minus(TemporalAmount amountToSubtract) {
if (amountToSubtract instanceof Period) {
Period periodToSubtract = (Period) amountToSubtract;
return minusMonths(periodToSubtract.toTotalMonths()).minusDays(periodToSubtract.getDays());
}
Objects.requireNonNull(amountToSubtract, "amountToSubtract");
return (LocalDate) amountToSubtract.subtractFrom(this);
}
示例4: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this time with the specified amount subtracted.
* <p>
* This returns an {@code OffsetTime}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Duration} but may be any other type implementing
* the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return an {@code OffsetTime} based on this time with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public OffsetTime minus(TemporalAmount amountToSubtract) {
return (OffsetTime) amountToSubtract.subtractFrom(this);
}
示例5: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this date-time with the specified amount subtracted.
* <p>
* This returns an {@code OffsetDateTime}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Period} or {@link Duration} but may be
* any other type implementing the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return an {@code OffsetDateTime} based on this date-time with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public OffsetDateTime minus(TemporalAmount amountToSubtract) {
return (OffsetDateTime) amountToSubtract.subtractFrom(this);
}
示例6: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this instant with the specified amount subtracted.
* <p>
* This returns an {@code Instant}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Duration} but may be any other type implementing
* the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return an {@code Instant} based on this instant with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public Instant minus(TemporalAmount amountToSubtract) {
return (Instant) amountToSubtract.subtractFrom(this);
}
示例7: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this year with the specified amount subtracted.
* <p>
* This returns a {@code Year}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Period} but may be any other type implementing
* the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return a {@code Year} based on this year with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public Year minus(TemporalAmount amountToSubtract) {
return (Year) amountToSubtract.subtractFrom(this);
}
示例8: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this time with the specified amount subtracted.
* <p>
* This returns a {@code LocalTime}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Duration} but may be any other type implementing
* the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return a {@code LocalTime} based on this time with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public LocalTime minus(TemporalAmount amountToSubtract) {
return (LocalTime) amountToSubtract.subtractFrom(this);
}
示例9: minus
import java.time.temporal.TemporalAmount; //导入方法依赖的package包/类
/**
* Returns a copy of this year-month with the specified amount subtracted.
* <p>
* This returns a {@code YearMonth}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Period} but may be any other type implementing
* the {@link TemporalAmount} interface.
* <p>
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return a {@code YearMonth} based on this year-month with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public YearMonth minus(TemporalAmount amountToSubtract) {
return (YearMonth) amountToSubtract.subtractFrom(this);
}