本文整理汇总了Java中java.awt.geom.CubicCurve2D.Double方法的典型用法代码示例。如果您正苦于以下问题:Java CubicCurve2D.Double方法的具体用法?Java CubicCurve2D.Double怎么用?Java CubicCurve2D.Double使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类java.awt.geom.CubicCurve2D
的用法示例。
在下文中一共展示了CubicCurve2D.Double方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: chopStart
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
/** Chop the start of this curve. */
public void chopStart(double t) {
int n = list.size();
t = t * n;
double di = StrictMath.floor(t);
int i = (int) di;
//
if (i < 0)
return;
if (i >= n)
list.clear();
while (i > 0 && !list.isEmpty()) {
list.remove(0);
i--;
}
if (list.isEmpty()) {
list.add(new CubicCurve2D.Double(startX = endX, startY = endY, endX, endY, endX, endY, endX, endY));
return;
}
CubicCurve2D.Double tmp = new CubicCurve2D.Double();
divide(t - di, list.get(0), new CubicCurve2D.Double(), tmp);
list.get(0).setCurve(tmp);
startX = tmp.x1;
startY = tmp.y1;
}
示例2: drawSmoothly
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
/** Draws the given curve smoothly (assuming the curve is monotonic vertically) */
public void drawSmoothly(Curve curve) {
final int smooth=15;
double cx=0, cy=0, slope;
for(int n=curve.list.size(), i=0; i<n; i++) {
CubicCurve2D.Double c=new CubicCurve2D.Double(), c2=(i+1<n)?curve.list.get(i+1):null;
c.setCurve(curve.list.get(i));
if (i>0) { c.ctrlx1=cx; c.ctrly1=cy; }
if (c2==null) { draw(c,false); return; }
if ((c.x1<c.x2 && c2.x2<c2.x1) || (c.x1>c.x2 && c2.x2>c2.x1)) slope=0; else slope=(c2.x2-c.x1)/(c2.y2-c.y1);
double tmp=c.y2-smooth, tmpx=c.x2-smooth*slope;
if (tmp>c.ctrly1 && tmp<c.y2 && in(c.x1, tmpx, c.x2)) { c.ctrly2=tmp; c.ctrlx2=tmpx; }
double tmp2=c2.y1+smooth, tmp2x=c2.x1+smooth*slope;
if (tmp2>c2.y1 && tmp2<c2.ctrly2 && in(c2.x1, tmp2x, c2.x2)) { cy=tmp2; cx=tmp2x; } else { cy=c2.ctrly1; cx=c2.ctrlx1; }
draw(c,false);
}
}
示例3: divide
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
/**
* Given 0<=t<=1 and an existing curve, divide it into two chunks and store
* the two chunks into "first" and "second"
*/
public static void divide(double t, CubicCurve2D.Double curve, CubicCurve2D.Double first,
CubicCurve2D.Double second) {
// This algorithm uses de Casteljau's algorithm for chopping one bezier
// curve into two bezier curves
first.x1 = curve.x1;
second.x2 = curve.x2;
first.ctrlx1 = (1 - t) * curve.x1 + t * curve.ctrlx1;
double x = (1 - t) * curve.ctrlx1 + t * curve.ctrlx2;
second.ctrlx2 = (1 - t) * curve.ctrlx2 + t * curve.x2;
first.ctrlx2 = (1 - t) * first.ctrlx1 + t * x;
second.ctrlx1 = (1 - t) * x + t * second.ctrlx2;
second.x1 = first.x2 = (1 - t) * first.ctrlx2 + t * second.ctrlx1;
// now that we've computed the x coordinates, we now compute the y
// coordinates
first.y1 = curve.y1;
second.y2 = curve.y2;
first.ctrly1 = (1 - t) * curve.y1 + t * curve.ctrly1;
double y = (1 - t) * curve.ctrly1 + t * curve.ctrly2;
second.ctrly2 = (1 - t) * curve.ctrly2 + t * curve.y2;
first.ctrly2 = (1 - t) * first.ctrly1 + t * y;
second.ctrly1 = (1 - t) * y + t * second.ctrly2;
second.y1 = first.y2 = (1 - t) * first.ctrly2 + t * second.ctrly1;
}
示例4: chopEnd
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
/** Chop the end of this curve. */
public void chopEnd(double t) {
int n=list.size();
t=t*n;
double di=StrictMath.floor(t);
int i=(int)di;
//
if (i<0) list.clear();
if (i>=n) return;
while(i+1<list.size()) list.remove(i+1);
if (list.isEmpty()) { endX=startX; endY=startY; list.add(new CubicCurve2D.Double(endX,endY, endX,endY, endX,endY, endX,endY)); return; }
CubicCurve2D.Double tmp=new CubicCurve2D.Double();
divide(t-di, list.get(i), tmp, new CubicCurve2D.Double());
list.get(i).setCurve(tmp);
endX=tmp.x2;
endY=tmp.y2;
}
示例5: test_drawCubicCurve
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
/**
* Draws random cubic curves within the given dimensions.
*
* @param g The Graphics2D object that is used to paint.
* @param size The size of the canvas.
*/
private void test_drawCubicCurve(Graphics2D g, Dimension size)
{
int maxTests = testSize;
int minSize = 10;
long startTime = System.currentTimeMillis();
for (int i = 0; i < maxTests; i += 1)
{
setRandom(g, size);
int x1 = (int) (Math.random() * (size.width - minSize));
int y1 = (int) (Math.random() * (size.height - minSize));
int xc1 = (int) (Math.random() * (size.width - minSize));
int yc1 = (int) (Math.random() * (size.height - minSize));
int xc2 = (int) (Math.random() * (size.width - minSize));
int yc2 = (int) (Math.random() * (size.height - minSize));
int x2 = (int) (Math.random() * (size.width - minSize));
int y2 = (int) (Math.random() * (size.height - minSize));
CubicCurve2D curve = new CubicCurve2D.Double(x1, y1, xc1, yc1, xc2,
yc2, x2, y2);
g.draw(curve);
}
long endTime = System.currentTimeMillis();
recordTest("draw(CubicCurve2D.Double) " + maxTests + " times",
(endTime - startTime));
}
示例6: paint
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
@Override
protected void paint (Graphics2D g,
Params p,
Point location,
Alignment alignment)
{
Point loc = alignment.translatedPoint(TOP_LEFT, p.rect, location);
CubicCurve2D curve = new CubicCurve2D.Double(
loc.x,
loc.y + p.rect.height,
loc.x + ((3 * p.rect.width) / 10),
loc.y + (p.rect.height / 5),
loc.x + (p.rect.width / 2),
loc.y,
loc.x + p.rect.width,
loc.y);
// Slur
g.draw(curve);
}
示例7: test_drawCubicCurve
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
/**
* Draws random cubic curves within the given dimensions.
*
* @param g The Graphics2D object that is used to paint.
* @param size The size of the canvas.
*/
private void test_drawCubicCurve(Graphics2D g, Dimension size)
{
int maxTests = testSize;
int minSize = 10;
long startTime = System.currentTimeMillis();
for (int i = 0; i < maxTests; i += 1)
{
setRandom(g, size);
int x1 = (int) (Math.random() * (size.width - minSize));
int y1 = (int) (Math.random() * (size.height - minSize));
int xc1 = (int) (Math.random() * (size.width - minSize));
int yc1 = (int) (Math.random() * (size.height - minSize));
int xc2 = (int) (Math.random() * (size.width - minSize));
int yc2 = (int) (Math.random() * (size.height - minSize));
int x2 = (int) (Math.random() * (size.width - minSize));
int y2 = (int) (Math.random() * (size.height - minSize));
CubicCurve2D curve = new CubicCurve2D.Double(x1, y1, xc1, yc1, xc2,
yc2, x2, y2);
g.draw(curve);
}
long endTime = System.currentTimeMillis();
recordTest("draw(CubicCurve2D.Double) " + maxTests + " times",
(endTime - startTime));
}
示例8: getCurveAt
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
public CubicCurve2D getCurveAt(int i){
if (i < 0 || i >= N() - 1 ) throw
new IndexOutOfBoundsException(
String.format("Interpolation Class: cannot " +
"retrieve curve with index : %d" , i));
CubicCurve2D.Double cubic = new CubicCurve2D.Double(
get(i).getX(),
get(i).getY(),
cP[2*i].getX(),
cP[2*i].getY(),
cP[2*i+1].getX(),
cP[2*i+1].getY(),
get(i+1).getX(),
get(i+1).getY());
return cubic;
}
示例9: getCurves
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
public ArrayList<Shape> getCurves(){
ArrayList<Shape> s = new ArrayList<Shape>();
for (int i = 0; i < N()-1; i++)
{
CubicCurve2D.Double cubic = new CubicCurve2D.Double(get(i).getX(),
get(i).getY(),
cP[2*i].getX(),
cP[2*i].getY(),
cP[2*i+1].getX(),
cP[2*i+1].getY(),
get(i+1).getX(),
get(i+1).getY());
s.add(cubic);
}
return s;
}
示例10: manageRect
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
private DotPath manageRect(Rectangle2D start, Rectangle2D end) {
final List<CubicCurve2D.Double> list = new ArrayList<CubicCurve2D.Double>(this.beziers);
while (true) {
if (BezierUtils.isCutting(list.get(0), start) == false) {
throw new IllegalStateException();
}
if (BezierUtils.dist(list.get(0)) <= 1.0) {
break;
}
final CubicCurve2D.Double left = new CubicCurve2D.Double();
final CubicCurve2D.Double right = new CubicCurve2D.Double();
list.get(0).subdivide(left, right);
list.set(0, left);
list.add(1, right);
if (BezierUtils.isCutting(list.get(1), start)) {
list.remove(0);
}
}
return new DotPath(list);
}
示例11: dup
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
/** Make a deep copy of this Curve object. */
public Curve dup() {
Curve ans = new Curve(startX, startY);
ans.endX = endX;
ans.endY = endY;
for (CubicCurve2D.Double x : list) {
CubicCurve2D.Double c = new CubicCurve2D.Double();
c.setCurve(x);
ans.list.add(c);
}
return ans;
}
示例12: getRegiao
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
@Override
public Shape getRegiao() {
if (Regiao == null) {
final int v1 = getHeight() / 3;
final int h1 = getWidth() / 2;
final int repo = v1 / 3;
final int L = getLeft();
final int T = getTop();
final int TH = T + getHeight() - repo;
final int LW = L + getWidth();
CubicCurve2D c = new CubicCurve2D.Double();
c.setCurve(LW, TH, LW - h1, TH - v1, L + h1, TH + v1, L, TH);
CubicCurve2D c2 = new CubicCurve2D.Double();
int v2 = v1 / 3;
c2.setCurve(L, T + v2, L + h1, T + v1 + v2, LW - h1, T - v1 + v2, LW, T + v2);
GeneralPath pa = new GeneralPath();
pa.setWindingRule(GeneralPath.WIND_EVEN_ODD);
pa.append(c2, true);
pa.lineTo(LW, TH);
pa.append(c, true);
pa.lineTo(L, T + v2);
pa.closePath();
Regiao = pa;
int ptToMove = 3;
this.reposicionePonto[ptToMove] = new Point(0, -repo);
ptsToMove[ptToMove] = 1;
ptToMove = 1;
this.reposicionePonto[ptToMove] = new Point(0, repo);
ptsToMove[ptToMove] = 1;
}
return Regiao;
}
示例13: dup
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
/** Make a deep copy of this Curve object. */
public Curve dup() {
Curve ans = new Curve(startX, startY);
ans.endX = endX;
ans.endY = endY;
for(CubicCurve2D.Double x:list) {
CubicCurve2D.Double c = new CubicCurve2D.Double();
c.setCurve(x);
ans.list.add(c);
}
return ans;
}
示例14: getRegiaoNota
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
public Shape getRegiaoNota() {
if (Regiao == null) {
final int v1 = getHeight() / 3;
final int h1 = getWidth() / 2;
final int repo = v1 / 3;
final int L = getLeft();
final int T = getTop();
final int TH = T + getHeight() - repo;
final int LW = L + getWidth();
CubicCurve2D c = new CubicCurve2D.Double();
c.setCurve(LW, TH, LW - h1, TH - v1, L + h1, TH + v1, L, TH);
CubicCurve2D c2 = new CubicCurve2D.Double();
int v2 = v1 / 3;
c2.setCurve(L, T + v2, L + h1, T + v1 + v2, LW - h1, T - v1 + v2, LW, T + v2);
GeneralPath pa = new GeneralPath();
pa.setWindingRule(GeneralPath.WIND_EVEN_ODD);
pa.append(c2, true);
pa.lineTo(LW, TH);
pa.append(c, true);
pa.lineTo(L, T + v2);
pa.closePath();
Regiao = pa;
int ptToMove = 3;
this.reposicionePonto[ptToMove] = new Point(0, -repo);
ptsToMove[ptToMove] = 1;
ptToMove = 1;
this.reposicionePonto[ptToMove] = new Point(0, repo);
ptsToMove[ptToMove] = 1;
}
return Regiao;
}
示例15: main
import java.awt.geom.CubicCurve2D; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
CubicCurve2D c = new CubicCurve2D.Double(50.0, 300.0,
150.0, 166.6666717529297,
238.0, 456.66668701171875,
350.0, 300.0);
Rectangle2D r = new Rectangle2D.Double(260, 300, 10, 10);
if (!c.intersects(r)) {
throw new Exception("The rectangle is contained. " +
"intersects(Rectangle2D) should return true");
}
}