本文整理汇总了Java中it.unimi.dsi.fastutil.ints.Int2DoubleMap.put方法的典型用法代码示例。如果您正苦于以下问题:Java Int2DoubleMap.put方法的具体用法?Java Int2DoubleMap.put怎么用?Java Int2DoubleMap.put使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类it.unimi.dsi.fastutil.ints.Int2DoubleMap
的用法示例。
在下文中一共展示了Int2DoubleMap.put方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: featurize
import it.unimi.dsi.fastutil.ints.Int2DoubleMap; //导入方法依赖的package包/类
public LearningInstance featurize(JsonNode entity, boolean update) {
Map<String, List<Feature>> feaMap = new HashMap<>();
for (FeatureExtractor extractor : featureExtractors) {
feaMap.putAll(extractor.extract(entity, update,
indexSpace));
}
Int2DoubleMap feas = new Int2DoubleOpenHashMap();
for (String fea : features) {
if (feaMap.containsKey(fea)) {
for (Feature feature : feaMap.get(fea)) {
feas.put(feature.getIndex(), feature.getValue());
}
}
}
double label = StandardLearningInstance.defaultLabel;
double weight = StandardLearningInstance.defaultWeight;
if (entity.has(labelName)) {
label = entity.get(labelName).asDouble();
} else if (feaMap.containsKey(labelName)) {
label = feaMap.get(labelName).get(0).getValue();
}
if (entity.has(weightName)) {
weight = entity.get(weightName).asDouble();
} else if (feaMap.containsKey(weightName)) {
weight = feaMap.get(weightName).get(0).getValue();
}
String group = null;
if (groupKeys != null && groupKeys.size() > 0) {
group = FeatureExtractorUtilities.composeConcatenatedKey(entity, groupKeys);
}
return new StandardLearningInstance(feas, label, weight, group);
}
示例2: scores
import it.unimi.dsi.fastutil.ints.Int2DoubleMap; //导入方法依赖的package包/类
@Override
public Int2DoubleMap scores(int docI) {
IntSet successors = successors(docI);
Int2DoubleMap results = new Int2DoubleOpenHashMap(successors.size());
IntSet catI = page2cat.get(docI);
for (int docJ : successors) {
IntSet catJ = page2cat.get(docJ);
results.put(docJ, -expectedness(catI, catJ));
}
return results;
}
示例3: scores
import it.unimi.dsi.fastutil.ints.Int2DoubleMap; //导入方法依赖的package包/类
@Override
public Int2DoubleMap scores(int docI) {
Int2DoubleMap originalScores = scorer.scores(docI);
ObjectIterator<Entry> iterator = originalScores.int2DoubleEntrySet().iterator();
Int2DoubleMap newScores = new Int2DoubleOpenHashMap(originalScores.size());
for (Entry entry = iterator.next(); iterator.hasNext(); entry = iterator.next()) {
newScores.put(entry.getIntKey(),
(entry.getDoubleValue() - mean) / stddev
);
}
return newScores;
}
示例4: testGlobalModel
import it.unimi.dsi.fastutil.ints.Int2DoubleMap; //导入方法依赖的package包/类
/**
* Tests the global probability method (BinomialModel::p).
*/
@Test
public void testGlobalModel() {
Int2DoubleMap expectedGlobalP = new Int2DoubleOpenHashMap();
expectedGlobalP.put(1, 0.8);
expectedGlobalP.put(2, 0.2);
BinomialModel<Integer, Integer, Integer> bm = new BinomialModel<>(false, Stream.empty(), preferences, featureData, 0.0);
assertEquals(expectedGlobalP.keySet(), bm.getFeatures());
expectedGlobalP.forEach((f, p) -> assertEquals(p, bm.p(f), 0.0001));
}
示例5: testLocalModelAlpha00
import it.unimi.dsi.fastutil.ints.Int2DoubleMap; //导入方法依赖的package包/类
/**
* Tests the local (user) probability method with alpha = 0.0.
*/
@Test
public void testLocalModelAlpha00() {
Int2DoubleMap expectedLocalP = new Int2DoubleOpenHashMap();
expectedLocalP.put(1, 0.8);
expectedLocalP.put(2, 0.2);
checkLocalModel(0.0, expectedLocalP);
}
示例6: testLocalModelAlpha05
import it.unimi.dsi.fastutil.ints.Int2DoubleMap; //导入方法依赖的package包/类
/**
* Tests the local (user) probability method with alpha = 0.5.
*/
@Test
public void testLocalModelAlpha05() {
Int2DoubleMap expectedLocalP = new Int2DoubleOpenHashMap();
expectedLocalP.put(1, 0.9);
expectedLocalP.put(2, 0.1);
checkLocalModel(0.5, expectedLocalP);
}
示例7: testLocalModelAlpha10
import it.unimi.dsi.fastutil.ints.Int2DoubleMap; //导入方法依赖的package包/类
/**
* Tests the local (user) probability method with alpha = 1.0.
*/
@Test
public void testLocalModelAlpha10() {
Int2DoubleMap expectedLocalP = new Int2DoubleOpenHashMap();
expectedLocalP.put(1, 1.0);
checkLocalModel(1.0, expectedLocalP);
}
示例8: predict
import it.unimi.dsi.fastutil.ints.Int2DoubleMap; //导入方法依赖的package包/类
/**
* Does not alter the model's state, as requested by interface.
*/
@Override
public int predict(SparseBinaryVector featureVector, String options, Int2DoubleMap decisionScores) {
if (model == null) throw new RuntimeException("No model loaded or trained.");
double[] decisionValues = new double[model.getNrClass()];
int bestClass = (int)Linear.predictValues(model, vector2FeatureArray(featureVector), decisionValues);
// If user wants the decision scores for each class
if (decisionScores != null) {
// Produce a mapping from each class ID to its decision score
int[] labelOrder = model.getLabels();
for (int i = 0; i < decisionValues.length; i++){
decisionScores.put(labelOrder[i], decisionValues[i]);
}
} return bestClass;
}