本文整理汇总了Java中edu.stanford.nlp.util.Pair.makePair方法的典型用法代码示例。如果您正苦于以下问题:Java Pair.makePair方法的具体用法?Java Pair.makePair怎么用?Java Pair.makePair使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类edu.stanford.nlp.util.Pair
的用法示例。
在下文中一共展示了Pair.makePair方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: classify
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
@Override
public Pair<String, Double> classify(KBPInput input) {
for (RelationType rel : RelationType.values()) {
if (rules.containsKey(rel) &&
rel.entityType == input.subjectType &&
rel.validNamedEntityLabels.contains(input.objectType)) {
Collection<SemgrexPattern> rulesForRel = rules.get(rel);
CoreMap sentence = input.sentence.asCoreMap(Sentence::nerTags, Sentence::dependencyGraph);
boolean matches
= matches(sentence, rulesForRel, input,
sentence.get(SemanticGraphCoreAnnotations.EnhancedPlusPlusDependenciesAnnotation.class)) ||
matches(sentence, rulesForRel, input,
sentence.get(SemanticGraphCoreAnnotations.AlternativeDependenciesAnnotation.class));
if (matches) {
//logger.log("MATCH for " + rel + ". " + sentence: + sentence + " with rules for " + rel);
return Pair.makePair(rel.canonicalName, 1.0);
}
}
}
return Pair.makePair(NO_RELATION, 1.0);
}
示例2: classify
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
@Override
public Pair<String, Double> classify(KBPInput input) {
for (RelationType rel : RelationType.values()) {
if (rules.containsKey(rel) &&
rel.entityType == input.subjectType &&
rel.validNamedEntityLabels.contains(input.objectType)) {
Collection<SemgrexPattern> rulesForRel = rules.get(rel);
CoreMap sentence = input.sentence.asCoreMap(Sentence::nerTags, Sentence::dependencyGraph);
boolean matches
= matches(sentence, rulesForRel, input,
sentence.get(SemanticGraphCoreAnnotations.EnhancedPlusPlusDependenciesAnnotation.class)) ||
matches(sentence, rulesForRel, input,
sentence.get(SemanticGraphCoreAnnotations.AlternativeDependenciesAnnotation.class));
if (matches) {
//logger.log("MATCH for " + rel + ". " + sentence: + sentence + " with rules for " + rel);
return Pair.makePair(rel.canonicalName, 1.0);
}
}
}
return Pair.makePair(NO_RELATION, 1.0);
}
示例3: classifyWithHighPrecision
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
private Pair<String, Double> classifyWithHighPrecision(KBPInput input) {
Pair<String, Double> prediction = Pair.makePair(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION, 1.0);
for (IntelKBPRelationExtractor extractor : extractors) {
if (!extractor.getClass().equals(IntelKBPTokensregexExtractor.class)) continue;
return extractor.classify(input);
}
return prediction;
}
示例4: classifyWithHighRecall
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
private Pair<String, Double> classifyWithHighRecall(KBPInput input) {
Pair<String, Double> prediction = Pair.makePair(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION, 1.0);
for (IntelKBPRelationExtractor extractor : extractors) {
Pair<String, Double> classifierPrediction = extractor.classify(input);
logger.info(extractor.getClass().getSimpleName() + ": " + classifierPrediction + " for " + input.getObjectText() + " - " + input.getSubjectText());
if (!classifierPrediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION)) {
if (prediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION))
prediction = classifierPrediction;
else {
prediction = classifierPrediction.second > prediction.second ? classifierPrediction : prediction;
}
}
}
return prediction;
}
示例5: classifyWithVote
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
private Pair<String, Double> classifyWithVote(KBPInput input) {
HashMap<String, Double> relation2Weights = new HashMap<>();
Pair<String, Double> prediction = Pair.makePair(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION, 0.0);
for (IntelKBPRelationExtractor extractor : extractors) {
Pair<String, Double> classifierPrediction = extractor.classify(input);
logger.info(extractor.getClass().getSimpleName() + ": " + classifierPrediction + " for " + input.getObjectText() + " - " + input.getSubjectText());
Double weight = relation2Weights.get(classifierPrediction.first);
Double newWeight = weight == null ? 1.0 / extractors.length : weight + 1.0 / extractors.length;
relation2Weights.put(classifierPrediction.first, newWeight);
if (newWeight > prediction.second) prediction = Pair.makePair(classifierPrediction.first, newWeight);
}
return prediction;
}
示例6: classifyWithWeightedVote
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
private Pair<String, Double> classifyWithWeightedVote(KBPInput input) {
HashMap<String, Double> relation2Weights = new HashMap<>();
Pair<String, Double> prediction = Pair.makePair(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION, 0.0);
for (IntelKBPRelationExtractor extractor : extractors) {
Pair<String, Double> classifierPrediction = extractor.classify(input);
logger.info(extractor.getClass().getSimpleName() + ": " + classifierPrediction + " for " + input.getObjectText() + " - " + input.getSubjectText());
// if (classifierPrediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION)) continue;
Double weight = relation2Weights.get(classifierPrediction.first);
Double newWeight = weight == null ? ModelWeight.getWeight(extractor) : weight + ModelWeight.getWeight(extractor);
relation2Weights.put(classifierPrediction.first, newWeight);
if (newWeight > prediction.second) prediction = Pair.makePair(classifierPrediction.first, newWeight);
}
return prediction;
}
示例7: classifyWithHighestScore
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
private Pair<String, Double> classifyWithHighestScore(KBPInput input) {
Pair<String, Double> prediction = Pair.makePair(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION, 1.0);
for (IntelKBPRelationExtractor extractor : extractors) {
Pair<String, Double> classifierPrediction = extractor.classify(input);
logger.info(extractor.getClass().getSimpleName() + ": " + classifierPrediction + " for " + input.getObjectText() + " - " + input.getSubjectText());
if (prediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION) ||
(!classifierPrediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION) &&
classifierPrediction.second > prediction.second)
) {
// The last prediction was NO_RELATION, or this is not NO_RELATION and has a higher score
prediction = classifierPrediction;
}
}
return prediction;
}
示例8: classifyDefault
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
private Pair<String, Double> classifyDefault(KBPInput input) {
Pair<String, Double> prediction = Pair.makePair(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION, 1.0);
for (IntelKBPRelationExtractor extractor : extractors) {
Pair<String, Double> classifierPrediction = extractor.classify(input);
if (prediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION) ||
(!classifierPrediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION) &&
classifierPrediction.second > prediction.second)
){
// The last prediction was NO_RELATION, or this is not NO_RELATION and has a higher score
prediction = classifierPrediction;
}
}
return prediction;
}
示例9: classify
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
@Override
public Pair<String, Double> classify(KBPInput input) {
Pair<String, Double> prediction = Pair.makePair(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION, 1.0);
for (edu.stanford.nlp.ie.KBPRelationExtractor extractor : extractors) {
Pair<String, Double> classifierPrediction = extractor.classify(input);
if (prediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION) ||
(!classifierPrediction.first.equals(edu.stanford.nlp.ie.KBPRelationExtractor.NO_RELATION) &&
classifierPrediction.second > prediction.second)
){
// The last prediction was NO_RELATION, or this is not NO_RELATION and has a higher score
prediction = classifierPrediction;
}
}
return prediction;
}
示例10: annotate
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
@Override
public void annotate(Annotation annotation) {
if (stopwords != null && stopwords.size() > 0 && annotation.containsKey(TokensAnnotation.class)) {
List<CoreLabel> tokens = annotation.get(TokensAnnotation.class);
for (CoreLabel token : tokens) {
boolean isWordStopword = stopwords.contains(token.word().toLowerCase());
boolean isLemmaStopword = checkLemma ? stopwords.contains(token.lemma().toLowerCase()) : false;
Pair<Boolean, Boolean> pair = Pair.makePair(isWordStopword, isLemmaStopword);
token.set(StopwordAnnotator.class, pair);
}
}
}
示例11: annotate
import edu.stanford.nlp.util.Pair; //导入方法依赖的package包/类
@Override
public void annotate(Annotation annotation) {
if (stopwords != null && stopwords.size() > 0 && annotation.containsKey(TokensAnnotation.class)) {
List<CoreLabel> tokens = annotation.get(TokensAnnotation.class);
for (CoreLabel token : tokens) {
boolean isWordStopword = stopwords.contains(token.word().toLowerCase());
boolean isLemmaStopword = checkLemma ? stopwords.contains(token.word().toLowerCase()) : false;
Pair<Boolean, Boolean> pair = Pair.makePair(isWordStopword, isLemmaStopword);
token.set(StopwordAnnotator.class, pair);
}
}
}