当前位置: 首页>>代码示例>>Java>>正文


Java Distribution.laplaceSmoothedDistribution方法代码示例

本文整理汇总了Java中edu.stanford.nlp.stats.Distribution.laplaceSmoothedDistribution方法的典型用法代码示例。如果您正苦于以下问题:Java Distribution.laplaceSmoothedDistribution方法的具体用法?Java Distribution.laplaceSmoothedDistribution怎么用?Java Distribution.laplaceSmoothedDistribution使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在edu.stanford.nlp.stats.Distribution的用法示例。


在下文中一共展示了Distribution.laplaceSmoothedDistribution方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: finishTraining

import edu.stanford.nlp.stats.Distribution; //导入方法依赖的package包/类
@Override
public void finishTraining() {
  lex.finishTraining();

  int numTags = tagIndex.size();
  POSes = new HashSet<String>(tagIndex.objectsList());
  initialPOSDist = Distribution.laplaceSmoothedDistribution(initial, numTags, 0.5);
  markovPOSDists = new HashMap<String, Distribution>();
  Set entries = ruleCounter.lowestLevelCounterEntrySet();
  for (Iterator iter = entries.iterator(); iter.hasNext();) {
    Map.Entry entry = (Map.Entry) iter.next();
    //      Map.Entry<List<String>, Counter> entry = (Map.Entry<List<String>, Counter>) iter.next();
    Distribution d = Distribution.laplaceSmoothedDistribution((ClassicCounter) entry.getValue(), numTags, 0.5);
    markovPOSDists.put(((List<String>) entry.getKey()).get(0), d);
  }
}
 
开发者ID:amark-india,项目名称:eventspotter,代码行数:17,代码来源:ChineseMarkovWordSegmenter.java

示例2: train

import edu.stanford.nlp.stats.Distribution; //导入方法依赖的package包/类
public void train(Collection<Tree> trees) {
  Numberer tagNumberer = Numberer.getGlobalNumberer("tags");
  lex.train(trees);
  ClassicCounter<String> initial = new ClassicCounter<String>();
  GeneralizedCounter ruleCounter = new GeneralizedCounter(2);
  for (Tree tree : trees) {
    List<Label> tags = tree.preTerminalYield();
    String last = null;
    for (Label tagLabel : tags) {
      String tag = tagLabel.value();
      tagNumberer.number(tag);
      if (last == null) {
        initial.incrementCount(tag);
      } else {
        ruleCounter.incrementCount2D(last, tag);
      }
      last = tag;
    }
  }
  int numTags = tagNumberer.total();
  POSes = new HashSet<String>(ErasureUtils.<Collection<String>>uncheckedCast(tagNumberer.objects()));
  initialPOSDist = Distribution.laplaceSmoothedDistribution(initial, numTags, 0.5);
  markovPOSDists = new HashMap<String, Distribution>();
  Set entries = ruleCounter.lowestLevelCounterEntrySet();
  for (Iterator iter = entries.iterator(); iter.hasNext();) {
    Map.Entry entry = (Map.Entry) iter.next();
    //      Map.Entry<List<String>, Counter> entry = (Map.Entry<List<String>, Counter>) iter.next();
    Distribution d = Distribution.laplaceSmoothedDistribution((ClassicCounter) entry.getValue(), numTags, 0.5);
    markovPOSDists.put(((List<String>) entry.getKey()).get(0), d);
  }
}
 
开发者ID:FabianFriedrich,项目名称:Text2Process,代码行数:32,代码来源:ChineseMarkovWordSegmenter.java

示例3: computeInputPrior

import edu.stanford.nlp.stats.Distribution; //导入方法依赖的package包/类
protected Distribution<String> computeInputPrior(Map<String, List<List<String>>> allTrainPaths) {
  ClassicCounter<String> result = new ClassicCounter<String>();
  for (Iterator<List<List<String>>> catI = allTrainPaths.values().iterator(); catI.hasNext();) {
    List<List<String>> pathList = catI.next();
    for (List<String> path : pathList) {
      for (String input : path) {
        result.incrementCount(input);
      }
    }
  }
  return Distribution.laplaceSmoothedDistribution(result, result.size() * 2, 0.5);
}
 
开发者ID:FabianFriedrich,项目名称:Text2Process,代码行数:13,代码来源:GrammarCompactor.java

示例4: computeInputPrior

import edu.stanford.nlp.stats.Distribution; //导入方法依赖的package包/类
protected static Distribution<String> computeInputPrior(Map<String, List<List<String>>> allTrainPaths) {
  ClassicCounter<String> result = new ClassicCounter<String>();
  for (List<List<String>> pathList : allTrainPaths.values()) {
    for (List<String> path : pathList) {
      for (String input : path) {
        result.incrementCount(input);
      }
    }
  }
  return Distribution.laplaceSmoothedDistribution(result, result.size() * 2, 0.5);
}
 
开发者ID:benblamey,项目名称:stanford-nlp,代码行数:12,代码来源:GrammarCompactor.java


注:本文中的edu.stanford.nlp.stats.Distribution.laplaceSmoothedDistribution方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。