当前位置: 首页>>代码示例>>Java>>正文


Java CRFClassifier.getJarClassifier方法代码示例

本文整理汇总了Java中edu.stanford.nlp.ie.crf.CRFClassifier.getJarClassifier方法的典型用法代码示例。如果您正苦于以下问题:Java CRFClassifier.getJarClassifier方法的具体用法?Java CRFClassifier.getJarClassifier怎么用?Java CRFClassifier.getJarClassifier使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在edu.stanford.nlp.ie.crf.CRFClassifier的用法示例。


在下文中一共展示了CRFClassifier.getJarClassifier方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: testConvertNERtoCLAVIN

import edu.stanford.nlp.ie.crf.CRFClassifier; //导入方法依赖的package包/类
/**
 * Checks conversion of Stanford NER output format into
 * {@link com.bericotech.clavin.resolver.ClavinLocationResolver}
 * input format.
 *
 * @throws IOException
 */
@Test
public void testConvertNERtoCLAVIN() throws IOException {
    InputStream mpis = this.getClass().getClassLoader().getResourceAsStream("models/english.all.3class.distsim.prop");
    Properties mp = new Properties();
    mp.load(mpis);
    AbstractSequenceClassifier<CoreMap> namedEntityRecognizer =
            CRFClassifier.getJarClassifier("/models/english.all.3class.distsim.crf.ser.gz", mp);

    String text = "I was born in Springfield and grew up in Boston.";
    List<Triple<String, Integer, Integer>> entitiesFromNER = namedEntityRecognizer.classifyToCharacterOffsets(text);

    List<LocationOccurrence> locationsForCLAVIN = convertNERtoCLAVIN(entitiesFromNER, text);
    assertEquals("wrong number of entities", 2, locationsForCLAVIN.size());
    assertEquals("wrong text for first entity", "Springfield", locationsForCLAVIN.get(0).getText());
    assertEquals("wrong position for first entity", 14, locationsForCLAVIN.get(0).getPosition());
    assertEquals("wrong text for second entity", "Boston", locationsForCLAVIN.get(1).getText());
    assertEquals("wrong position for second entity", 41, locationsForCLAVIN.get(1).getPosition());
}
 
开发者ID:Berico-Technologies,项目名称:CLAVIN-NERD,代码行数:26,代码来源:StanfordExtractorTest.java

示例2: StanfordNlpNerService

import edu.stanford.nlp.ie.crf.CRFClassifier; //导入方法依赖的package包/类
public StanfordNlpNerService(String serializedClassifier) {
	this.classifier = CRFClassifier.getJarClassifier(
			"/edu/stanford/nlp/models/ner/" + serializedClassifier, null);
}
 
开发者ID:singram,项目名称:ner_service_example,代码行数:5,代码来源:StanfordNlpNerService.java

示例3: main

import edu.stanford.nlp.ie.crf.CRFClassifier; //导入方法依赖的package包/类
/**
 * Starts this server on the specified port.  The classifier used can be
 * either a default one stored in the jar file from which this code is
 * invoked or you can specify it as a filename or as another classifier
 * resource name, which must correspond to the name of a resource in the
 * /classifiers/ directory of the jar file.
 * <p>
 * Usage: <code>java edu.stanford.nlp.ie.NERServer [-loadClassifier file|-loadJarClassifier resource|-client] -port portNumber</code>
 *
 * @param args Command-line arguments (described above)
 * @throws Exception If file or Java class problems with serialized classifier
 */
@SuppressWarnings({"StringEqualsEmptyString"})
public static void main (String[] args) throws Exception {
  Properties props = StringUtils.argsToProperties(args);
  String loadFile = props.getProperty("loadClassifier");
  String loadJarFile = props.getProperty("loadJarClassifier");
  String client = props.getProperty("client");
  String portStr = props.getProperty("port");
  props.remove("port"); // so later code doesn't complain
  if (portStr == null || portStr.equals("")) {
    System.err.println(USAGE);
    return;
  }
  String charset = "utf-8";
  String encoding = props.getProperty("encoding");
  if (encoding != null && ! "".equals(encoding)) {
    charset = encoding;
  }
  int port;
  try {
    port = Integer.parseInt(portStr);
  } catch (NumberFormatException e) {
    System.err.println("Non-numerical port");
    System.err.println(USAGE);
    return;
  }
  // default output format for if no output format is specified
  if (props.getProperty("outputFormat") == null) {
    props.setProperty("outputFormat", "slashTags");
  }

  if (client != null && ! client.equals("")) {
    // run a test client for illustration/testing
    String host = props.getProperty("host");
    NERClient.communicateWithNERServer(host, port, charset);
  } else {
    AbstractSequenceClassifier asc;
    if (loadFile != null && ! loadFile.equals("")) {
      asc = CRFClassifier.getClassifier(loadFile, props);
    } else if (loadJarFile != null && ! loadJarFile.equals("")) {
      asc = CRFClassifier.getJarClassifier(loadJarFile, props);
    } else {
      asc = CRFClassifier.getDefaultClassifier(props);
    }

    new NERServer(port, asc, charset).run();
  }
}
 
开发者ID:paulirwin,项目名称:Stanford.NER.Net,代码行数:60,代码来源:NERServer.java

示例4: resolveStanfordEntities

import edu.stanford.nlp.ie.crf.CRFClassifier; //导入方法依赖的package包/类
/**
 * Sometimes, you might already be using Stanford NER elsewhere in
 * your application, and you'd like to just pass the output from
 * Stanford NER directly into CLAVIN, without having to re-run the
 * input through Stanford NER just to use CLAVIN. This example
 * shows you how to very easily do exactly that.
 *
 * @throws IOException
 * @throws ClavinException
 */
private static void resolveStanfordEntities() throws IOException, ClavinException {

    /*#####################################################################
     *
     * Start with Stanford NER -- no need to get CLAVIN involved for now.
     *
     *###################################################################*/

    // instantiate Stanford NER entity extractor
    InputStream mpis = WorkflowDemoNERD.class.getClassLoader().getResourceAsStream("models/english.all.3class.distsim.prop");
    Properties mp = new Properties();
    mp.load(mpis);
    AbstractSequenceClassifier<CoreMap> namedEntityRecognizer =
            CRFClassifier.getJarClassifier("/models/english.all.3class.distsim.crf.ser.gz", mp);

    // Unstructured text file about Somalia to be geoparsed
    File inputFile = new File("src/test/resources/sample-docs/Somalia-doc.txt");

    // Grab the contents of the text file as a String
    String inputString = TextUtils.fileToString(inputFile);

    // extract entities from input text using Stanford NER
    List<Triple<String, Integer, Integer>> entitiesFromNER = namedEntityRecognizer.classifyToCharacterOffsets(inputString);

    /*#####################################################################
     *
     * Now, CLAVIN comes into play...
     *
     *###################################################################*/

    // convert Stanford NER output to ClavinLocationResolver input
    List<LocationOccurrence> locationsForCLAVIN = convertNERtoCLAVIN(entitiesFromNER, inputString);

    // instantiate the CLAVIN location resolver
    ClavinLocationResolver clavinLocationResolver = new ClavinLocationResolver(new LuceneGazetteer(new File("./IndexDirectory")));

    // resolve location entities extracted from input text
    List<ResolvedLocation> resolvedLocations = clavinLocationResolver.resolveLocations(locationsForCLAVIN, 1, 1, false);

    // Display the ResolvedLocations found for the location names
    for (ResolvedLocation resolvedLocation : resolvedLocations)
        System.out.println(resolvedLocation);
}
 
开发者ID:Berico-Technologies,项目名称:CLAVIN-NERD,代码行数:54,代码来源:WorkflowDemoNERD.java

示例5: initializeWithModelFiles

import edu.stanford.nlp.ie.crf.CRFClassifier; //导入方法依赖的package包/类
/**
 * Builds a {@link StanfordNamedEntityExtractor} by instantiating the 
 * Stanford NER named entity recognizer with a specified 
 * language model.
 * 
 * @param NERmodel                      path to Stanford NER language model
 * @param NERprop                       path to property file for Stanford NER language model
 * @throws IOException 
 * @throws ClassNotFoundException 
 * @throws ClassCastException 
 */
//@SuppressWarnings("unchecked")
private void initializeWithModelFiles(String NERmodel, String NERprop) throws IOException, ClassCastException, ClassNotFoundException {
    InputStream mpis = this.getClass().getClassLoader().getResourceAsStream("models/" + NERprop);
    Properties mp = new Properties();
    mp.load(mpis);
    namedEntityRecognizer = (AbstractSequenceClassifier<CoreMap>)
            CRFClassifier.getJarClassifier("/models/" + NERmodel, mp);
}
 
开发者ID:mitmedialab,项目名称:CLIFF,代码行数:20,代码来源:StanfordNamedEntityExtractor.java

示例6: StanfordExtractor

import edu.stanford.nlp.ie.crf.CRFClassifier; //导入方法依赖的package包/类
/**
 * Builds a {@link StanfordExtractor} by instantiating the 
 * Stanford NER named entity recognizer with a specified 
 * language model.
 * 
 * @param NERmodel                      path to Stanford NER language model
 * @param NERprop						path to property file for Stanford NER language model
 * @throws IOException 					Error by contract
 * @throws ClassNotFoundException 		Error by contract
 * @throws ClassCastException 			Error by contract
 */
//@SuppressWarnings("unchecked")
public StanfordExtractor(String NERmodel, String NERprop) throws IOException, ClassCastException, ClassNotFoundException {
	
	InputStream mpis = this.getClass().getClassLoader().getResourceAsStream("models/" + NERprop);
	Properties mp = new Properties();
	mp.load(mpis);
   	
	namedEntityRecognizer = CRFClassifier.getJarClassifier("/models/" + NERmodel, mp);
}
 
开发者ID:Berico-Technologies,项目名称:CLAVIN-NERD,代码行数:21,代码来源:StanfordExtractor.java


注:本文中的edu.stanford.nlp.ie.crf.CRFClassifier.getJarClassifier方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。