当前位置: 首页>>代码示例>>Java>>正文


Java PredictionModel.apply方法代码示例

本文整理汇总了Java中com.rapidminer.operator.learner.PredictionModel.apply方法的典型用法代码示例。如果您正苦于以下问题:Java PredictionModel.apply方法的具体用法?Java PredictionModel.apply怎么用?Java PredictionModel.apply使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在com.rapidminer.operator.learner.PredictionModel的用法示例。


在下文中一共展示了PredictionModel.apply方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: apply

import com.rapidminer.operator.learner.PredictionModel; //导入方法依赖的package包/类
@Override
public ExampleSet apply(ExampleSet exampleSet) throws OperatorException {
	// retrieving and applying model
	PredictionModel model = modelInput.getData(PredictionModel.class);
	exampleSet = model.apply(exampleSet);

	Attribute weightAttr = exampleSet.getAttributes().getWeight();
	if (weightAttr == null) {
		weightAttr = Tools.createWeightAttribute(exampleSet);
	}

	WeightedPerformanceMeasures wp = new WeightedPerformanceMeasures(exampleSet);
	WeightedPerformanceMeasures.reweightExamples(exampleSet, wp.getContingencyMatrix(), true);

	// recalculate weight attribute statistics
	exampleSet.recalculateAttributeStatistics(exampleSet.getAttributes().getWeight());
	double maxWeight = exampleSet.getStatistics(exampleSet.getAttributes().getWeight(), Statistics.MAXIMUM);

	// fill new table
	RandomGenerator randomGenerator = RandomGenerator.getRandomGenerator(this);

	int[] remappingIndices = new int[exampleSet.size()];
	int i = 0;
	for (Example example : exampleSet) {
		if (randomGenerator.nextDouble() > example.getValue(weightAttr) / maxWeight) {
			example.setValue(weightAttr, 1.0d);
			remappingIndices[i] = 1;
		}
		i++;
	}
	checkForStop();
	SplittedExampleSet splittedExampleSet = new SplittedExampleSet(exampleSet, new Partition(remappingIndices, 2));
	splittedExampleSet.selectSingleSubset(1);
	return splittedExampleSet;
}
 
开发者ID:transwarpio,项目名称:rapidminer,代码行数:36,代码来源:ModelBasedSampling.java

示例2: apply

import com.rapidminer.operator.learner.PredictionModel; //导入方法依赖的package包/类
@Override
public ExampleSet apply(ExampleSet exampleSet) throws OperatorException {
	// retrieving and applying model
	PredictionModel model = modelInput.getData(PredictionModel.class);
	exampleSet = model.apply(exampleSet);

	Attribute weightAttr = Tools.createWeightAttribute(exampleSet);

	WeightedPerformanceMeasures wp = new WeightedPerformanceMeasures(exampleSet);
	WeightedPerformanceMeasures.reweightExamples(exampleSet, wp.getContingencyMatrix(), true);

	// recalculate weight attribute statistics
	exampleSet.recalculateAttributeStatistics(exampleSet.getAttributes().getWeight());
	double maxWeight = exampleSet.getStatistics(exampleSet.getAttributes().getWeight(), Statistics.MAXIMUM);

	// fill new table
	RandomGenerator randomGenerator = RandomGenerator.getRandomGenerator(this);

	int[] remappingIndices = new int[exampleSet.size()];
	int i = 0;
	for (Example example : exampleSet) {
		if (randomGenerator.nextDouble() > example.getValue(weightAttr) / maxWeight) {
			example.setValue(weightAttr, 1.0d);
			remappingIndices[i] = 1;
		}
		i++;
	}
	checkForStop();
	SplittedExampleSet splittedExampleSet = new SplittedExampleSet(exampleSet, new Partition(remappingIndices, 2));
	splittedExampleSet.selectSingleSubset(1);
	return splittedExampleSet;
}
 
开发者ID:rapidminer,项目名称:rapidminer-studio,代码行数:33,代码来源:ModelBasedSampling.java

示例3: apply

import com.rapidminer.operator.learner.PredictionModel; //导入方法依赖的package包/类
@Override
public ExampleSet apply(ExampleSet exampleSet) throws OperatorException {
	// retrieving and applying model
	PredictionModel model = modelInput.getData(PredictionModel.class);
	exampleSet = model.apply(exampleSet);


	Attribute weightAttr = exampleSet.getAttributes().getWeight();
	if (weightAttr == null) {
		weightAttr = Tools.createWeightAttribute(exampleSet);
	}

	WeightedPerformanceMeasures wp = new WeightedPerformanceMeasures(exampleSet);
	WeightedPerformanceMeasures.reweightExamples(exampleSet, wp.getContingencyMatrix(), true);

	// recalculate weight attribute statistics
	exampleSet.recalculateAttributeStatistics(exampleSet.getAttributes().getWeight());
	double maxWeight = exampleSet.getStatistics(exampleSet.getAttributes().getWeight(), Statistics.MAXIMUM);
	
	// fill new table
	RandomGenerator randomGenerator = RandomGenerator.getRandomGenerator(this);

	int[] remappingIndices = new int[exampleSet.size()];
	int i = 0;
	for (Example example: exampleSet) {
		if (randomGenerator.nextDouble() > example.getValue(weightAttr) / maxWeight) {
			example.setValue(weightAttr, 1.0d);
			remappingIndices[i] = 1;
		}
		i++;
	}
	checkForStop();
	SplittedExampleSet splittedExampleSet = new SplittedExampleSet(exampleSet, new Partition(remappingIndices, 2));
	splittedExampleSet.selectSingleSubset(1);
	return splittedExampleSet;
}
 
开发者ID:rapidminer,项目名称:rapidminer-5,代码行数:37,代码来源:ModelBasedSampling.java


注:本文中的com.rapidminer.operator.learner.PredictionModel.apply方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。