当前位置: 首页>>代码示例>>Java>>正文


Java NominalMapping.mapIndex方法代码示例

本文整理汇总了Java中com.rapidminer.example.table.NominalMapping.mapIndex方法的典型用法代码示例。如果您正苦于以下问题:Java NominalMapping.mapIndex方法的具体用法?Java NominalMapping.mapIndex怎么用?Java NominalMapping.mapIndex使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在com.rapidminer.example.table.NominalMapping的用法示例。


在下文中一共展示了NominalMapping.mapIndex方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: learn

import com.rapidminer.example.table.NominalMapping; //导入方法依赖的package包/类
@Override
public Model learn(ExampleSet exampleSet) throws OperatorException {
	int numberOfNumericalAttributes = 0;
	for (Attribute attribute : exampleSet.getAttributes()) {
		this.checkForStop();
		if (attribute.isNumerical()) {
			numberOfNumericalAttributes++;
		}
	}

	NominalMapping labelMapping = exampleSet.getAttributes().getLabel().getMapping();
	String[] labelValues = new String[labelMapping.size()];
	for (int i = 0; i < labelMapping.size(); i++) {
		this.checkForStop();
		labelValues[i] = labelMapping.mapIndex(i);
	}

	Matrix[] meanVectors = getMeanVectors(exampleSet, numberOfNumericalAttributes, labelValues);
	Matrix[] inverseCovariance = getInverseCovarianceMatrices(exampleSet, labelValues);

	return getModel(exampleSet, labelValues, meanVectors, inverseCovariance,
			getAprioriProbabilities(exampleSet, labelValues));
}
 
开发者ID:transwarpio,项目名称:rapidminer,代码行数:24,代码来源:LinearDiscriminantAnalysis.java

示例2: learn

import com.rapidminer.example.table.NominalMapping; //导入方法依赖的package包/类
@Override
public Model learn(ExampleSet exampleSet) throws OperatorException {
	int numberOfNumericalAttributes = 0;
	for (Attribute attribute : exampleSet.getAttributes()) {
		this.checkForStop();
		if (attribute.isNumerical()) {
			numberOfNumericalAttributes++;
		}
	}

	NominalMapping labelMapping = exampleSet.getAttributes().getLabel().getMapping();
	String[] labelValues = new String[labelMapping.size()];
	for (int i = 0; i < labelMapping.size(); i++) {
		this.checkForStop();
		labelValues[i] = labelMapping.mapIndex(i);
	}

	Matrix[] meanVectors = getMeanVectors(exampleSet, numberOfNumericalAttributes, labelValues);
	Matrix[] inverseCovariance = getInverseCovarianceMatrices(exampleSet, labelValues);

	return getModel(exampleSet, labelValues, meanVectors, inverseCovariance);
}
 
开发者ID:rapidminer,项目名称:rapidminer-studio,代码行数:23,代码来源:RegularizedDiscriminantAnalysis.java

示例3: learn

import com.rapidminer.example.table.NominalMapping; //导入方法依赖的package包/类
public Model learn(ExampleSet exampleSet) throws OperatorException {
	int numberOfNumericalAttributes = 0;
	for (Attribute attribute: exampleSet.getAttributes()) {
		if (attribute.isNumerical()) {
			numberOfNumericalAttributes++;	
		}
	}

	NominalMapping labelMapping = exampleSet.getAttributes().getLabel().getMapping();
	String[] labelValues = new String[labelMapping.size()];
	for (int i = 0; i < labelMapping.size(); i++) {
		labelValues[i] = labelMapping.mapIndex(i);	
	}


	Matrix[] meanVectors = getMeanVectors(exampleSet, numberOfNumericalAttributes, labelValues);
	Matrix[] inverseCovariance = getInverseCovarianceMatrices(exampleSet, labelValues);

	return getModel(exampleSet, labelValues, meanVectors, inverseCovariance, getAprioriProbabilities(exampleSet, labelValues));
}
 
开发者ID:rapidminer,项目名称:rapidminer-5,代码行数:21,代码来源:LinearDiscriminantAnalysis.java


注:本文中的com.rapidminer.example.table.NominalMapping.mapIndex方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。