本文整理汇总了Java中com.rapidminer.example.Tools.onlyNumericalAttributes方法的典型用法代码示例。如果您正苦于以下问题:Java Tools.onlyNumericalAttributes方法的具体用法?Java Tools.onlyNumericalAttributes怎么用?Java Tools.onlyNumericalAttributes使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类com.rapidminer.example.Tools
的用法示例。
在下文中一共展示了Tools.onlyNumericalAttributes方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: doWork
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void doWork() throws OperatorException {
ExampleSet es = exampleSetInput.getData(ExampleSet.class);
int dimensions = getParameterAsInt(PARAMETER_DIMENSIONS);
Tools.onlyNumericalAttributes(es, "dimensionality reduction");
Tools.isNonEmpty(es);
Tools.checkAndCreateIds(es);
double[][] p = dimensionalityReduction(es, dimensions);
DimensionalityReducerModel model = new DimensionalityReducerModel(es, p, dimensions);
if (exampleSetOutput.isConnected()) {
exampleSetOutput.deliver(model.apply((ExampleSet) es.clone()));
}
originalOutput.deliver(es);
modelOutput.deliver(model);
}
示例2: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
if (attributes.size() != 1) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
for (Example example : exampleSet) {
for (Attribute attribute : attributes) {
if (example.getValue(attribute) <= 0) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
;
}
}
}
示例3: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
if (attributes.size() != 1) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
for (Example example : exampleSet) {
for (Attribute attribute : attributes) {
double value = example.getValue(attribute);
if (value <= 0 || value >= 1) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
;
}
}
}
示例4: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
if (attributes.size() != 1) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
for (Attribute attribute : attributes) {
for (Example example : exampleSet) {
if (example.getValue(attribute) <= 0) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
}
}
}
示例5: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
if (attributes.size() != 1) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
for (Attribute attribute : attributes) {
for (Example example : exampleSet) {
double value = example.getValue(attribute);
if (value <= 0 || value >= 1) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
}
}
}
示例6: doWork
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void doWork() throws OperatorException {
ExampleSet es = exampleSetInput.getData(ExampleSet.class);
int dimensions = getParameterAsInt(PARAMETER_DIMENSIONS);
Tools.onlyNumericalAttributes(es, "dimensionality reduction");
Tools.isNonEmpty(es);
Tools.checkAndCreateIds(es);
double[][] p = dimensionalityReduction(es, dimensions);
DimensionalityReducerModel model = new DimensionalityReducerModel(es, p, dimensions);
if (exampleSetOutput.isConnected())
exampleSetOutput.deliver(model.apply((ExampleSet)es.clone()));
originalOutput.deliver(es);
modelOutput.deliver(model);
}
示例7: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
for (Example example : exampleSet) {
for (Attribute attribute : attributes) {
if (example.getValue(attribute) <= 0) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
;
}
}
}
示例8: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
if (attributes.size() != 1) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Try 'Squared Euclidean distance' bregman divergence.");
}
}
示例9: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
for (Attribute attribute : attributes) {
for (Example example : exampleSet) {
if (example.getValue(attribute) <= 0) {
throw new OperatorException(
"The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
}
}
}
}
示例10: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
for (Example example: exampleSet) {
for (Attribute attribute: attributes) {
if (example.getValue(attribute) <= 0)
throw new OperatorException("The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");;
}
}
}
示例11: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
if (attributes.size() != 1)
throw new OperatorException("The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");
for (Example example: exampleSet) {
for (Attribute attribute: attributes) {
if (example.getValue(attribute) <= 0)
throw new OperatorException("The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence.");;
}
}
}
示例12: init
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void init(ExampleSet exampleSet) throws OperatorException {
super.init(exampleSet);
Tools.onlyNumericalAttributes(exampleSet, "value based similarities");
Attributes attributes = exampleSet.getAttributes();
if (attributes.size() != 1)
throw new OperatorException("The bregman divergence you've choosen is not applicable for the dataset! Try 'Squared Euclidean distance' bregman divergence.");
}
示例13: doWork
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void doWork() throws OperatorException {
ExampleSet exampleSet = exampleSetInput.getData(ExampleSet.class);
// only use numeric attributes
Tools.onlyNumericalAttributes(exampleSet, "KernelPCA");
Tools.onlyNonMissingValues(exampleSet, getOperatorClassName(), this);
Attributes attributes = exampleSet.getAttributes();
int numberOfExamples = exampleSet.size();
// calculating means for later zero centering
exampleSet.recalculateAllAttributeStatistics();
double[] means = new double[exampleSet.getAttributes().size()];
int i = 0;
for (Attribute attribute : exampleSet.getAttributes()) {
means[i] = exampleSet.getStatistics(attribute, Statistics.AVERAGE);
i++;
}
// kernel
Kernel kernel = Kernel.createKernel(this);
// copying zero centered exampleValues
ArrayList<double[]> exampleValues = new ArrayList<double[]>(numberOfExamples);
i = 0;
for (Example columnExample : exampleSet) {
double[] columnValues = getAttributeValues(columnExample, attributes, means);
exampleValues.add(columnValues);
i++;
}
// filling kernel matrix
Matrix kernelMatrix = new Matrix(numberOfExamples, numberOfExamples);
for (i = 0; i < numberOfExamples; i++) {
for (int j = 0; j < numberOfExamples; j++) {
kernelMatrix.set(i, j, kernel.calculateDistance(exampleValues.get(i), exampleValues.get(j)));
}
}
// calculating eigenVectors
EigenvalueDecomposition eig = kernelMatrix.eig();
Model model = new KernelPCAModel(exampleSet, means, eig.getV(), exampleValues, kernel);
if (exampleSetOutput.isConnected()) {
exampleSetOutput.deliver(model.apply(exampleSet));
}
originalOutput.deliver(exampleSet);
modelOutput.deliver(model);
}
示例14: doWork
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void doWork() throws OperatorException {
// check whether all attributes are numerical
ExampleSet exampleSet = exampleSetInput.getData(ExampleSet.class);
Tools.onlyNonMissingValues(exampleSet, getOperatorClassName(), this, new String[0]);
Tools.onlyNumericalAttributes(exampleSet, "PCA");
Iterator<Attribute> iterate = exampleSet.getAttributes().allAttributes();
while (iterate.hasNext()) {
Attribute curattribute = iterate.next();
if (curattribute.getName().startsWith("pc_")) {
throw new UserError(this, "pca_attribute_names", curattribute.getName());
}
}
// create covariance matrix
log("Creating the covariance matrix...");
Matrix covarianceMatrix = CovarianceMatrix.getCovarianceMatrix(exampleSet, this);
// EigenVector and EigenValues of the covariance matrix
log("Performing the eigenvalue decomposition...");
EigenvalueDecomposition eigenvalueDecomposition = covarianceMatrix.eig();
checkForStop();
// create and deliver results
double[] eigenvalues = eigenvalueDecomposition.getRealEigenvalues();
Matrix eigenvectorMatrix = eigenvalueDecomposition.getV();
double[][] eigenvectors = eigenvectorMatrix.getArray();
PCAModel model = new PCAModel(exampleSet, eigenvalues, eigenvectors);
int reductionType = getParameterAsInt(PARAMETER_REDUCTION_TYPE);
switch (reductionType) {
case REDUCTION_NONE:
model.setNumberOfComponents(exampleSet.getAttributes().size());
break;
case REDUCTION_VARIANCE:
model.setVarianceThreshold(getParameterAsDouble(PARAMETER_VARIANCE_THRESHOLD));
break;
case REDUCTION_FIXED:
model.setNumberOfComponents(Math.min(exampleSet.getAttributes().size(),
getParameterAsInt(PARAMETER_NUMBER_OF_COMPONENTS)));
break;
}
modelOutput.deliver(model);
originalOutput.deliver(exampleSet);
if (exampleSetOutput.isConnected()) {
exampleSetOutput.deliver(model.apply(exampleSet));
}
}
示例15: doWork
import com.rapidminer.example.Tools; //导入方法依赖的package包/类
@Override
public void doWork() throws OperatorException {
// check whether all attributes are numerical
ExampleSet exampleSet = exampleSetInput.getData(ExampleSet.class);
Tools.onlyNonMissingValues(exampleSet, getOperatorClassName(), this);
Tools.onlyNumericalAttributes(exampleSet, "SVD");
// create data matrix
Matrix dataMatrix = MatrixTools.getDataAsMatrix(exampleSet);
// Singular Value Decomposition
SingularValueDecomposition singularValueDecomposition = dataMatrix.svd();
// create and deliver results
double[] singularvalues = singularValueDecomposition.getSingularValues();
Matrix vMatrix = singularValueDecomposition.getV();
SVDModel model = new SVDModel(exampleSet, singularvalues, vMatrix);
if (getCompatibilityLevel().isAtMost(OPERATOR_VERSION_CHANGED_ATTRIBUTE_NAME)) {
model.enableLegacyMode();
}
int reductionType = getParameterAsInt(PARAMETER_REDUCTION_TYPE);
switch (reductionType) {
case REDUCTION_NONE:
model.setNumberOfComponents(exampleSet.getAttributes().size());
break;
case REDUCTION_PERCENTAGE:
model.setVarianceThreshold(getParameterAsDouble(PARAMETER_PERCENTAGE_THRESHOLD));
break;
case REDUCTION_FIXED:
model.setNumberOfComponents(getParameterAsInt(PARAMETER_NUMBER_OF_COMPONENTS));
break;
}
modelOutput.deliver(model);
originalOutput.deliver(exampleSet);
if (exampleSetOutput.isConnected()) {
exampleSetOutput.deliver(model.apply(exampleSet));
}
}