当前位置: 首页>>代码示例>>Java>>正文


Java StreamSchema.getAttribute方法代码示例

本文整理汇总了Java中com.ibm.streams.operator.StreamSchema.getAttribute方法的典型用法代码示例。如果您正苦于以下问题:Java StreamSchema.getAttribute方法的具体用法?Java StreamSchema.getAttribute怎么用?Java StreamSchema.getAttribute使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在com.ibm.streams.operator.StreamSchema的用法示例。


在下文中一共展示了StreamSchema.getAttribute方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: isValidTupleToAvroMapping

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
public static boolean isValidTupleToAvroMapping(String tupleSchemaName, StreamSchema tupleSchema, Schema avroSchema)
		throws Exception {
	boolean validMapping = true;
	LOGGER.log(TraceLevel.TRACE,
			"Checking attributes in tuple schema " + tupleSchemaName + ": " + tupleSchema.getAttributeNames());
	for (String attributeName : tupleSchema.getAttributeNames()) {
		Attribute attribute = tupleSchema.getAttribute(attributeName);
		Field avroField = avroSchema.getField(attributeName);
		if (avroField != null)
			validMapping = validMapping
					& isValidAttributeToAvroMapping(attributeName, attribute.getType(), avroField.schema());
		else
			LOGGER.log(TraceLevel.INFO, "Attribute " + attributeName + " in schema " + tupleSchemaName
					+ " does not have a corresponding field in the Avro schema. It will not be mapped.");
	}
	return validMapping;
}
 
开发者ID:IBMStreams,项目名称:streamsx.avro,代码行数:18,代码来源:TupleToAvroConverter.java

示例2: checkOutputAttributeRuntime

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
@ContextCheck(compile=false)
public static void checkOutputAttributeRuntime(OperatorContextChecker checker) {
	
	OperatorContext context = checker.getOperatorContext();
	StreamSchema schema = context.getStreamingOutputs().get(0).getStreamSchema();
	Attribute resultAttribute = schema.getAttribute(ANALYSISRESULT_ATTRIBUTE);
	
	//make sure that the output attribute is the right type based on the type of analysis
	String type = context.getParameterValues("analysisType").get(0);
	
	if(type.equals(AnalysisType.Prediction.name())) {
		if( resultAttribute.getType().getMetaType() != MetaType.FLOAT64) {
			tracer.log(TraceLevel.ERROR, "TRACE_M_WRONG_TYPE_ALS", new Object[]{"Prediction", "float64", resultAttribute.getType()});
			checker.setInvalidContext();
		}
	}
	else if(!isList(resultAttribute, Integer.class)) {
		tracer.log(TraceLevel.ERROR, "TRACE_M_WRONG_TYPE_ALS", new Object[]{type, "list<int32>", resultAttribute.getType()});
		checker.setInvalidContext();
	}
}
 
开发者ID:IBMStreams,项目名称:streamsx.sparkMLLib,代码行数:22,代码来源:SparkCollaborativeFilteringALS.java

示例3: checkControlPortInputAttribute

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
@ContextCheck
public static void checkControlPortInputAttribute(OperatorContextChecker checker) {
	OperatorContext context = checker.getOperatorContext();
	
	if(context.getNumberOfStreamingInputs() == 2) {
		StreamSchema schema = context.getStreamingInputs().get(1).getStreamSchema();
		
		//the first attribute must be of type rstring
		Attribute jsonAttr = schema.getAttribute(0);
		
		//check if the output attribute is present where the result will be stored
		if(jsonAttr != null && jsonAttr.getType().getMetaType() != MetaType.RSTRING) {
			tracer.log(TraceLevel.ERROR, "COMPILE_M_WRONG_TYPE", jsonAttr.getType());
			checker.setInvalidContext();
		}
	}
}
 
开发者ID:IBMStreams,项目名称:streamsx.sparkMLLib,代码行数:18,代码来源:AbstractSparkMLlibOperator.java

示例4: checkOutputAttribute

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
/**
 * Compile time to check to ensure that the output schema contains an attribute called
 * 'analysisResult'. The type of the attribute depends on the specific type of the
 * operator and is handled by the appropriate derived class.
 */
@ContextCheck
public static void checkOutputAttribute(OperatorContextChecker checker) {
	OperatorContext context = checker.getOperatorContext();
	
	if(context.getNumberOfStreamingOutputs() == 1) {
		StreamSchema schema = context.getStreamingOutputs().get(0).getStreamSchema();
		Attribute resultAttribute = schema.getAttribute(ANALYSISRESULT_ATTRIBUTE);
		
		//check if the output attribute is present where the result will be stored
		if(resultAttribute == null) {
			tracer.log(TraceLevel.ERROR, "COMPILE_M_MISSING_ATTRIBUTE", new Object[]{ ANALYSISRESULT_ATTRIBUTE});
			checker.setInvalidContext();
		}
	}
}
 
开发者ID:IBMStreams,项目名称:streamsx.sparkMLLib,代码行数:21,代码来源:AbstractSparkMLlibOperator.java

示例5: checkFileAttributeName

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
/**
 * Check that the fileAttributeName parameter is an attribute of the right
 * type.
 * 
 * @param checker
 */
@ContextCheck(compile = false)
public static void checkFileAttributeName(OperatorContextChecker checker) {
	StreamSchema inputSchema = checker.getOperatorContext()
			.getStreamingInputs().get(0).getStreamSchema();
	List<String> fileAttrNameList = checker.getOperatorContext()
			.getParameterValues(IHdfsConstants.PARAM_FILE_NAME_ATTR);
	if (fileAttrNameList == null || fileAttrNameList.size() == 0) {
		// Nothing to check, because the parameter doesn't exist.
		return;
	}

	String fileAttrName = fileAttrNameList.get(0);
	Attribute fileAttr = inputSchema.getAttribute(fileAttrName);
	if (fileAttr == null) {
		checker.setInvalidContext(Messages.getString("HDFS_SINK_NO_ATTRIBUTE"), 
				new Object[] { fileAttrName });
	}
	if (MetaType.RSTRING != fileAttr.getType().getMetaType()
			&& MetaType.USTRING != fileAttr.getType().getMetaType()) {
		checker.setInvalidContext(
				Messages.getString("HDFS_SINK_INVALID_ATTR_FILENAME", fileAttr.getType().getMetaType()), 
				new Object[] {});
	}
}
 
开发者ID:IBMStreams,项目名称:streamsx.hdfs,代码行数:31,代码来源:HDFS2FileSink.java

示例6: convertTupleToAvro

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
public static GenericRecord convertTupleToAvro(Tuple tuple, StreamSchema streamSchema, Schema avroSchema) {
	GenericRecord datum = new GenericData.Record(avroSchema);
	for (String attributeName : streamSchema.getAttributeNames()) {
		Attribute attribute = streamSchema.getAttribute(attributeName);
		Object tupleAttribute = tuple.getObject(attributeName);
		Field avroField = avroSchema.getField(attributeName);
		// If there is an Avro field associated with this attribute, convert
		if (avroField != null)
			datum.put(attributeName,
					convertAttributeToAvro(attributeName, tupleAttribute, attribute.getType(), avroField.schema()));
	}
	return datum;
}
 
开发者ID:IBMStreams,项目名称:streamsx.avro,代码行数:14,代码来源:TupleToAvroConverter.java

示例7: checkOutputAttributeType

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
/**
 * Check to ensure that an analysisResult attribute of type int32 is present on the output schema
 */
@ContextCheck
public static void checkOutputAttributeType(OperatorContextChecker checker) {
	
	OperatorContext context = checker.getOperatorContext();
	StreamSchema schema = context.getStreamingOutputs().get(0).getStreamSchema();
	Attribute resultAttribute = schema.getAttribute(ANALYSISRESULT_ATTRIBUTE);
	
	if(resultAttribute != null && resultAttribute.getType().getMetaType() != MetaType.INT32) {
		tracer.log(TraceLevel.ERROR, "COMPILE_M_WRONG_TYPE_FULL", new Object[]{ANALYSISRESULT_ATTRIBUTE, "int32", resultAttribute.getType()});
		checker.setInvalidContext();
	}
}
 
开发者ID:IBMStreams,项目名称:streamsx.sparkMLLib,代码行数:16,代码来源:SparkClusteringKMeans.java

示例8: checkOutputAttributeType

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
/**
 * Check to ensure that an analysisResult attribute of type float64 is present on the output schema
 */
@ContextCheck
public static void checkOutputAttributeType(OperatorContextChecker checker) {
	
	OperatorContext context = checker.getOperatorContext();
	StreamSchema schema = context.getStreamingOutputs().get(0).getStreamSchema();
	Attribute resultAttribute = schema.getAttribute(ANALYSISRESULT_ATTRIBUTE);
	
	if(resultAttribute != null && resultAttribute.getType().getMetaType() != MetaType.FLOAT64) {
		tracer.log(TraceLevel.ERROR, "COMPILE_M_WRONG_TYPE_FULL", new Object[]{ANALYSISRESULT_ATTRIBUTE, "float64", resultAttribute.getType()});
		checker.setInvalidContext();
	}
}
 
开发者ID:IBMStreams,项目名称:streamsx.sparkMLLib,代码行数:16,代码来源:AbstractSparkMLlibListToDoubleOperator.java

示例9: checkOutputAttributeType

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
@ContextCheck (compile  = true)
public static void checkOutputAttributeType(OperatorContextChecker checker) {
	OperatorContext context = checker.getOperatorContext();

	StreamSchema schema = context.getStreamingOutputs().get(0).getStreamSchema();
	Attribute resultAttribute = schema.getAttribute(ANALYSISRESULT_ATTRIBUTE);
	
	if(resultAttribute != null && resultAttribute.getType().getMetaType() != MetaType.FLOAT64) {
		tracer.log(TraceLevel.ERROR, "COMPILE_M_WRONG_TYPE_FULL", new Object[]{ANALYSISRESULT_ATTRIBUTE, "float64", resultAttribute.getType()});
		checker.setInvalidContext();
	}
}
 
开发者ID:IBMStreams,项目名称:streamsx.sparkMLLib,代码行数:13,代码来源:SparkIsotonicRegression.java

示例10: initialize

import com.ibm.streams.operator.StreamSchema; //导入方法依赖的package包/类
/**
 * Initialize this operator. Called once before any tuples are processed.
 * 
 * @param operatorContext
 *            OperatorContext for this operator.
 * @throws Exception
 *             Operator failure, will cause the enclosing PE to terminate.
 */
@Override
public synchronized void initialize(OperatorContext operatorContext) throws Exception {
	// Must call super.initialize(context) to correctly setup an operator.
	super.initialize(operatorContext);
	LOGGER.log(TraceLevel.TRACE, "Operator " + operatorContext.getName() + " initializing in PE: "
			+ operatorContext.getPE().getPEId() + " in Job: " + operatorContext.getPE().getJobId());

	StreamSchema ssOp0 = getOutput(0).getStreamSchema();
	StreamSchema ssIp0 = getInput(0).getStreamSchema();

	// If no input Avro message blob attribute specified, use default
	if (inputAvroMessage == null) {
		if (ssIp0.getAttributeCount() == 1) {
			inputAvroMessage = ssIp0.getAttribute(0).getName();
		} else {
			inputAvroMessage = DEFAULT_INPUT_AVRO_MSG_ATTRIBUTE;
		}
	}
	LOGGER.log(TraceLevel.TRACE, "Input Avro message attribute: " + inputAvroMessage);

	// If no Avro key attribute specified, check if optional attribute is
	// available in the input tuple
	if (inputAvroKey == null) {
		if (ssIp0.getAttribute(DEFAULT_INPUT_AVRO_KEY_ATTRIBUTE) != null)
			inputAvroKey = DEFAULT_INPUT_AVRO_KEY_ATTRIBUTE;
	}
	if (inputAvroKey != null)
		LOGGER.log(TraceLevel.TRACE, "Input Avro key attribute: " + inputAvroKey);

	// If no output JSON message attribute specified, use default
	if (outputJsonMessage == null) {
		if (ssOp0.getAttributeCount() == 1) {
			outputJsonMessage = ssOp0.getAttribute(0).getName();
		} else {
			outputJsonMessage = DEFAULT_OUTPUT_JSON_MSG_ATTRIBUTE;
		}
	}
	LOGGER.log(TraceLevel.TRACE, "Output JSON message attribute: " + outputJsonMessage);

	// If no JSON key attribute specified, check if optional attribute is
	// available in the output tuple
	if (outputJsonKey == null) {
		if (ssIp0.getAttribute(DEFAULT_OUTPUT_JSON_KEY_ATTRIBUTE) != null)
			outputJsonKey = DEFAULT_OUTPUT_JSON_KEY_ATTRIBUTE;
	}
	if (outputJsonKey != null)
		LOGGER.log(TraceLevel.TRACE, "Output JSON key attribute: " + outputJsonKey);

	// Get the Avro message schema file to parse the Avro messages
	if (!avroMessageSchemaFile.isEmpty()) {
		LOGGER.log(TraceLevel.TRACE, "Retrieving and parsing Avro message schema file " + avroMessageSchemaFile);
		InputStream avscMessageInput = new FileInputStream(avroMessageSchemaFile);
		messageSchema = new Schema.Parser().parse(avscMessageInput);
	}

	// Get the Avro key schema file to parse the Avro messages
	if (!avroKeySchemaFile.isEmpty()) {
		LOGGER.log(TraceLevel.TRACE, "Retrieving and parsing Avro key schema file " + avroKeySchemaFile);
		InputStream avscKeyInput = new FileInputStream(avroKeySchemaFile);
		keySchema = new Schema.Parser().parse(avscKeyInput);
	}

	// If the schema is embedded in the message, the schema file must not be
	// specified
	if (avroSchemaEmbedded && !avroMessageSchemaFile.isEmpty())
		throw new Exception(
				"Parameter avroMessageSchema cannot be specified if the schema is embedded in the message.");

	LOGGER.log(TraceLevel.TRACE, "AvroToJSON operator initialized, ready to receive tuples");

}
 
开发者ID:IBMStreams,项目名称:streamsx.avro,代码行数:80,代码来源:AvroToJSON.java


注:本文中的com.ibm.streams.operator.StreamSchema.getAttribute方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。