当前位置: 首页>>代码示例>>Java>>正文


Java RandomEngine.makeDefault方法代码示例

本文整理汇总了Java中cern.jet.random.engine.RandomEngine.makeDefault方法的典型用法代码示例。如果您正苦于以下问题:Java RandomEngine.makeDefault方法的具体用法?Java RandomEngine.makeDefault怎么用?Java RandomEngine.makeDefault使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cern.jet.random.engine.RandomEngine的用法示例。


在下文中一共展示了RandomEngine.makeDefault方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: testGeometricDistribution

import cern.jet.random.engine.RandomEngine; //导入方法依赖的package包/类
@Test
public void testGeometricDistribution()
{
    StreamSummary<Integer> vs = new StreamSummary<Integer>(10);
    RandomEngine re = RandomEngine.makeDefault();

    for (int i = 0; i < NUM_ITERATIONS; i++)
    {
        int z = Distributions.nextGeometric(0.25, re);
        vs.add(z);
    }

    List<CountEntry<Integer>> top = vs.peek(5);
    System.out.println("Geometric:");
    for (CountEntry<Integer> e : top)
    {
        System.out.println(e);
    }

    CountEntry<Integer> tippyTop = top.get(0);
    assertEquals(0, (int) tippyTop.getItem());
    System.out.println(vs);
}
 
开发者ID:mayconbordin,项目名称:streaminer,代码行数:24,代码来源:TestStreamSummary.java

示例2: testGeometricDistribution

import cern.jet.random.engine.RandomEngine; //导入方法依赖的package包/类
@Test
public void testGeometricDistribution() {
    ConcurrentStreamSummary<Integer> vs = new ConcurrentStreamSummary<Integer>(10);
    RandomEngine re = RandomEngine.makeDefault();

    for (int i = 0; i < NUM_ITERATIONS; i++) {
        int z = Distributions.nextGeometric(0.25, re);
        vs.add(z);
    }

    List<CountEntry<Integer>> top = vs.peek(5);
    System.out.println("Geometric:");
    for (CountEntry<Integer> e : top) {
        System.out.println(e.getItem() + "\t" + e.getFrequency());
    }

    CountEntry<Integer> tippyTop = top.get(0);
    assertEquals(0, (int) tippyTop.getItem());
    System.out.println(vs);
}
 
开发者ID:mayconbordin,项目名称:streaminer,代码行数:21,代码来源:TestConcurrentStreamSummary.java

示例3: testZipfianDistribution

import cern.jet.random.engine.RandomEngine; //导入方法依赖的package包/类
@Test
public void testZipfianDistribution()
{
    RandomEngine re = RandomEngine.makeDefault();

    for (int i = 0; i < NUM_ITERATIONS; i++)
    {
        int z = Distributions.nextZipfInt(1.2D, re);
        vs.add(z);
    }

    List<CountEntry<Integer>> top = vs.peek(5);
    System.out.println("Zipfian:");
    for (CountEntry<Integer> e : top)
    {
        System.out.println(e);
    }

    CountEntry<Integer> tippyTop = top.get(0);
    assertTrue(tippyTop.getItem() < 3);
}
 
开发者ID:mayconbordin,项目名称:streaminer,代码行数:22,代码来源:TestStochasticTopper.java

示例4: testGeometricDistribution

import cern.jet.random.engine.RandomEngine; //导入方法依赖的package包/类
@Test
public void testGeometricDistribution()
{
    RandomEngine re = RandomEngine.makeDefault();

    for (int i = 0; i < NUM_ITERATIONS; i++)
    {
        int z = Distributions.nextGeometric(0.25, re);
        vs.add(z);
    }

    List<CountEntry<Integer>> top = vs.peek(5);
    System.out.println("Geometric:");
    for (CountEntry<Integer> e : top)
    {
        System.out.println(e);
    }

    CountEntry<Integer> tippyTop = top.get(0);
    assertTrue(tippyTop.getItem() < 3);
}
 
开发者ID:mayconbordin,项目名称:streaminer,代码行数:22,代码来源:TestStochasticTopper.java

示例5: run

import cern.jet.random.engine.RandomEngine; //导入方法依赖的package包/类
public void run() {
    Binomial binomial = new Binomial(100, .01, RandomEngine.makeDefault());
    for (int i = first; i < matrices.size(); i += skip) {
        WeightMatrix mi = matrices.get(i);
        double maxscorei = mi.getMaxScore();
        System.err.println("matrix one " + i);
        for (int j = i + 1; j < matrices.size(); j++) {

            WeightMatrix mj = matrices.get(j);
            double maxscorej = mj.getMaxScore();
            double percenti = cutoffpercent - step;
            while (percenti <= 1) {
                percenti += step;
                double ti = percenti * maxscorei;
                double percentj = cutoffpercent - step;
                while (percentj <= 1) {
                    percentj += step;
                    double tj = percentj * maxscorej;
                    int fgcount = count(i,j,ti,tj,fghits);
                    double thetaone = ((double)fgcount) / ((double)fgsize);
                    if (fgsize <= 0 || thetaone < minfrac) {
                        continue;

                    }
                    int bgcount = count(i,j,ti,tj,bghits);
                    double thetatwo = ((double)bgcount) / ((double)bgsize);
                    if (thetatwo < minfrac ||
                        thetatwo <= 0) {
                        continue;
                    }
                    if (thetatwo > maxbackfrac) {
                        continue;
                    }
                    double fc = Math.log(thetaone / thetatwo);
                    if (Math.abs(fc) < Math.abs(Math.log(minfoldchange))) {
                        continue;
                    }

                    binomial.setNandP(fgsize, thetatwo);
                    double pval = 1 - binomial.cdf(fgcount);
                    if (pval <= filtersig) {
                        CombResult result = new CombResult();
                        result.matrices.add(mi);
                        result.matrices.add(mj);
                        result.sizeone = fgsize;
                        result.sizetwo = bgsize;
                        result.pval = pval;
                        result.percents.add(percenti);
                        result.percents.add(percentj);
                        result.cutoffs.add(ti);
                        result.cutoffs.add(tj);
                        result.countone = fgcount;
                        result.counttwo = bgcount;
                        result.logfoldchange = fc;
                        result.freqone = thetaone;
                        result.freqtwo = thetatwo;
                        if (result.pval <= filtersig && 
                            Math.abs(result.logfoldchange) >= Math.abs(Math.log(minfoldchange)) &&
                            (result.freqtwo <= maxbackfrac) && 
                            (result.freqone >= minfrac || result.freqtwo >= minfrac)) {
                            results.add(result);
                        }
                    }
                }
            }
        }
    }
}
 
开发者ID:seqcode,项目名称:seqcode-core,代码行数:69,代码来源:CombinatorialEnrichment.java

示例6: testRandomEngine

import cern.jet.random.engine.RandomEngine; //导入方法依赖的package包/类
@Test
    public void testRandomEngine()
    {
        int[] maxcounts = new int[10];
        int[] counts = new int[20];

        RandomEngine re = RandomEngine.makeDefault();

        for (int i = 0; i < NUM_ITERATIONS; i++)
        {
//            int z = Distributions.nextZipfInt(1.2D, re);
            int z = Distributions.nextGeometric(0.25, re);
            if (z > Integer.MAX_VALUE - 9)
            {
                maxcounts[Integer.MAX_VALUE - z]++;
            }
            if (z < 20)
            {
                counts[z]++;
            }
        }

        for (int i = 0; i < 20; i++)
        {
            System.out.println(i + ": " + counts[i]);
        }

        for (int i = 9; i >= 0; i--)
        {
            System.out.println((Integer.MAX_VALUE - i) + ": " + maxcounts[i]);
        }

    }
 
开发者ID:mayconbordin,项目名称:streaminer,代码行数:34,代码来源:TestStochasticTopper.java

示例7: DiscriminativeKmers

import cern.jet.random.engine.RandomEngine; //导入方法依赖的package包/类
public DiscriminativeKmers () {
    seqgen = new SequenceGenerator();
    binomial = new Binomial(100, .01, RandomEngine.makeDefault());
}
 
开发者ID:seqcode,项目名称:seqcode-core,代码行数:5,代码来源:DiscriminativeKmers.java

示例8: deconv

import cern.jet.random.engine.RandomEngine; //导入方法依赖的package包/类
public void deconv() {
    if (nogamma) {
        /* deconvolve the actual data: convolution of two gammas is a gamma of half the size
         */
        deconv = new double[smoothed.length / 2 + 1];
        for (int i = 0; i < deconv.length; i++) {
            deconv[i] = 0;
        }
        for (int i = 0; i < smoothed.length; i++) {
            deconv[i / 2] += smoothed[i];
        }
        double max = 0;
        for (int i = 0; i < deconv.length; i++) {
            if (deconv[i] > max) {
                max = deconv[i];
            }
        }
        for (int i = 0; i < deconv.length; i++) {
            deconv[i] /= max;
        }
    } else {
        double mean, var;
        int min = 0;
        if (!Double.isNaN(alpha) && !Double.isNaN(beta)) {
            mean = alpha * beta;
            var = alpha * beta * beta;
        } else {
            mean = 0;
            /* The gamma distribution isn't a good fit if it doesn't
               start at ~0.  So find the first index at which there's much
               probability mass and then effectively shift smoothed[] by
               that much
            */
            for (int i = 0; i < smoothed.length; i++) {
                if (smoothed[i] < .00000001) {
                    smoothed[i] = 0;
                    min = i;
                } else {
                    break;
                }
            }
            for (int i = min; i < smoothed.length; i++) {
                System.err.println(String.format("smoothed[%d] = %.20f", i, smoothed[i]));
                mean += smoothed[i] * (i - min);
            }
            var = 0;
            for (int i = min; i < smoothed.length; i++) {
                var += smoothed[i] * (i - min - mean) * (i - min - mean);
            }
            beta = var / mean;
            alpha = mean / beta;
        }
        System.err.println(String.format("min %d, mean %f, var %f, alpha %f, beta %f",
                                         min, mean, var, alpha, beta));
        alpha = alpha / 2;  // do the deconvolution
        min /= 2;
        deconv = new double[maxdist];
        for (int i = 0; i < min; i++) {
            deconv[i] = 0;
        }
        RandomEngine engine = RandomEngine.makeDefault();
        Gamma gamma = new Gamma(alpha, beta, engine);
        for (int i = min; i < deconv.length; i++) {
            deconv[i] = gamma.pdf(i - min);
        }            
    }
}
 
开发者ID:shaunmahony,项目名称:multigps-archive,代码行数:68,代码来源:ConToInt.java


注:本文中的cern.jet.random.engine.RandomEngine.makeDefault方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。